
AFRL-OSR-VA-TR-2014-0093

Stochastic Quantitative Reasoning for Autonomous Mission Planning

Carlos Varela
RENSSELAER POLYTECHNIC INST TROY NY

Final Report
04/09/2014

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTC
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

31-03-2014 Final Performance Report 30-09-2011 TO 31-03-2014

Stochastic Quantitative Reasoning for Autonomous Mission Planning

Varela, Carlos, A, Ph.D.

Rensselaer Polytechnic Institute
110 8th Street
Troy, NY 12180

USAF, AFRL DUNS 143574726
AF OFFICE OF SCIENTIFIC RESEARCH
875 N. RANDOLPH ST. ROOM 3112
ARLINGTON VA 22203

FA9550-11-1-0332

AFOSR

In research performed with funding from this grant, PI Varela has developed mathematical concepts and software to
automatically detect and correct for errors in spatio-temporal data streams. Varela and his group invented and formalized
the notions of error signatures and mode likelihood vectors, and developed the PILOTS programming language v0.2.3. An
important application of this work was to demonstrate that the Air France flight 447 accident from June 2009 could have
been avoided by using these techniques applied on air speed, ground speed, and wind speed data streams.

Spatio-temporal data streams, Error signatures, Mode likelihood vectors, PILOTS programming language, AF447 accident.

Distribution A - Approved for Public Release

FINAL&PERFORMANCE&REPORT&
!
Grant&Title:!!Stochastic!Quantitative!Reasoning!for!Autonomous!Mission!Planning!
Grant&#:&&FA9550=11=1=0332!
PI:!!Carlos!A.!Varela,!Ph.D.!
Program&Manager:!!Frederica!Darema,!Ph.D.!
!
Reporting&Period:!September!30,!2011!to!March!31,!2014!
!
Executive&Summary:!
In!research!performed!with!funding!from!this!grant,!PI!Varela!has!developed!
mathematical!concepts!and!software!to!automatically!detect!and!correct!for!errors!
in!spatio=temporal!data!streams.!Varela!and!his!group!invented!and!formalized!the!
notions!of!error!signatures!and!mode!likelihood!vectors,!and!developed!the!PILOTS!
programming!language!v0.2.3.!An!important!application!of!this!work!was!to!
demonstrate!that!the!Air!France!flight!447!(AF447)!accident!in!June!2009!could!
have!been!avoided!by!using!these!techniques!applied!on!air!speed,!ground!speed,!
and!wind!speed!data!streams.!
!
Archival&Publications&(published)&during&reporting&period:!

1. Carlos!A.!Varela.!Programming&Distributed&Computing&Systems:&A&
Foundational&Approach.!MIT!Press,!May!2013.!

2. Richard!S.!Klockowski,!Shigeru!Imai,!Colin!Rice,!and!Carlos!A.!Varela.!
Autonomous&Data&Error&Detection&and&Recovery&in&Streaming&
Applications.!In!Proceedings+of+the+International+Conference+on+
Computational+Science+(ICCS+2013).+Dynamic+Data@Driven+Application+Systems+
(DDDAS+2013)+Workshop,!pages!2036=2045,!May!2013.!

3. Matthew!Newby,!Nathan!Cole,!Heidi!Jo!Newberg,!Travis!Desell,!Malik!
Magdon=Ismail,!Boleslaw!Szymanski,!Carlos!Varela,!Benjamin!Willett,!
and!Brian!Yanny.!A&Spatial&Characterization&of&the&Sagittarius&Dwarf&
Galaxy&Tidal&Tails.!The+Astronomical+Journal,!145(163),!May!2013.!

4. Shigeru!Imai,!Richard!Klockowski,!and!Carlos!A.!Varela.!SelfLHealing&SpatioL
Temporal&Data&Streams&Using&Error&Signatures.!In!2nd+International+
Conference+on+Big+Data+Science+and+Engineering+(BDSE+2013),!Sydney,!
Australia,!December!2013.!

5. Shigeru!Imai,!Thomas!Chestna,!and!Carlos!A.!Varela.!Accurate&Resource&
Prediction&for&Hybrid&IaaS&Clouds&Using&WorkloadLTailored&Elastic&
Compute&Units.!In!6th+IEEE/ACM+International+Conference+on+Utility+and+
Cloud+Computing+(UCC+2013),!Dresden,!Germany,!December!2013.!

6. David!Musser!and!Carlos!A.!Varela.!Structured&Reasoning&about&Actor&
Systems.!In!Agere+Workshop+at+ACM+SPLASH+2013+Conference,!Indianapolis,!
Indiana,!October!2013.!

7. Carlos!A.!Varela,!Manish!Parashar,!and!Gul!Agha,!editors.!5th&IEEE/ACM&
International&Conference&on&Utility&and&Cloud&Computing,&UCC&2012,&
Chicago,&IL,&USA,&November&5L8,&2012,!2012.!IEEE.!

8. Shigeru!Imai,!Thomas!Chestna,!and!Carlos!A.!Varela.!Elastic&Scalable&Cloud&
Computing&Using&ApplicationLLevel&Migration.!In!5th+IEEE/ACM+
International+Conference+on+Utility+and+Cloud+Computing+(UCC+2012),!Chicago,!
Illinois,!USA,!November!2012.!

9. Shigeru!Imai!and!Carlos!A.!Varela.!Programming&SpatioLTemporal&Data&
Streaming&Applications&with&HighLLevel&Specifications.!In!3rd+ACM+
SIGSPATIAL+International+Workshop+on+Querying+and+Mining+Uncertain+
Spatio@Temporal+Data+(QUeST)+2012,!Redondo!Beach,!California,!USA,!
November!2012.!

10. Shigeru!Imai!and!Carlos!A.!Varela.!A&Programming&Model&for&SpatioL
Temporal&Data&Streaming&Applications.!In!Dynamic+Data@Driven+
Application+Systems+(DDDAS+2012),!ICCS,!Omaha,!Nebraska,!pages!1139=1148,!
June!2012.!

11. David!Musser!and!Carlos!A.!Varela.!HumanLReadable&MachineLCheckable&
Abstract&Reasoning&about&Actor&Systems.!Technical!report!12=01,!
Rensselaer!Polytechnic!Institute!Department!of!Computer!Science,!January!
2012.!

12. Shigeru!Imai.!Task&Offloading&between&Smartphones&and&Distributed&
Computational&Resources.!Master's!thesis,!Rensselaer!Polytechnic!Institute,!
May!2012.!

13. Marco!A.!S.!Netto,!Christian!Vecchiola,!Michael!Kirley,!Carlos!A.!Varela,!and!
Rajkumar!Buyya.!Use&of&Run&Time&Predictions&for&Automatic&CoL
Allocation&of&MultiLCluster&Resources&for&Iterative&Parallel&Applications.!
Journal+of+Parallel+and+Distributed+Computing,!pp!43pp,!2011.!

14. Travis!Desell,!Malik!Magdon=Ismail,!Heidi!Newberg,!Lee!A.!Newberg,!
Boleslaw!K.!Szymanski,!and!Carlos!A.!Varela.!A&Robust&Asynchronous&
Newton&Method&for&Massive&Scale&Computing&Systems.!In!International+
Conference+on+Computational+Intelligence+and+Software+Engineering+(CiSE),!
Wuhan,!China,!December!2011.!

15. Shigeru!Imai!and!Carlos!A.!Varela.!LightLWeight&Adaptive&Task&Offloading&
from&Smartphones&to&Nearby&Computational&Resources.!In!ACM+Research+
in+Applied+Computation+Symposium+(RACS+2011),!Miami,!Florida,!November!
2011.!

16. Qingling!Wang!and!Carlos!A.!Varela.!Impact&of&Cloud&Computing&
Virtualization&Strategies&on&Workloads'&Performance.!In!4th+IEEE/ACM+
International+Conference+on+Utility+and+Cloud+Computing(UCC+2011),!
Melbourne,!Australia,!December!2011.!

17. Shigeru!Imai,!Pratik!Patel,!and!Carlos!A.!Varela.!Developing&Elastic&Software&
for&the&Cloud.!Invited!book!chapter!in!Encyclopedia+on+Cloud+Computing,!
editors!San!Murugesan!and!Irena!Bojanova,!submitted,!to!appear!mid=2014.!

18. Shigeru!Imai!and!Carlos!A.!Varela.!Dynamic&DataLDriven&Avionics&Systems&
with&Stochastic&Error&Detection&and&Correction.!Invited!book!chapter!
in!Dynamic+Data+Driven+Application+Systems+(DDDAS),!editor!Frederica!
Darema,!submitted,!to!appear!mid=2014.!

!
&

Students&Involved&in&this&Research:!
1. Shigeru!Imai,!Ph.D.!student!
2. Richard!Klockowski,!Ph.D.!student!
3. Colin!Rice,!B.S.!student!
4. Alessandro!Galli,!B.S.!student!

!
Most&Significant&Advances&and&Conclusions:!
The!key!research!results!directly!supported!by!this!grant!are!published!in!the!
following!articles!(available!at!http://wcl.cs.rpi.edu/bib/Keyword/DATA=
STREAMING.html!and!also!attached!to!this!report):!

1. Shigeru!Imai,!Richard!Klockowski,!and!Carlos!A.!Varela.!SelfLHealing&SpatioL
Temporal&Data&Streams&Using&Error&Signatures.!In!2nd+International+
Conference+on+Big+Data+Science+and+Engineering+(BDSE+2013),!Sydney,!
Australia,!December!2013.!

2. Richard!S.!Klockowski,!Shigeru!Imai,!Colin!Rice,!and!Carlos!A.!Varela.!
Autonomous&Data&Error&Detection&and&Recovery&in&Streaming&
Applications.!In!Proceedings+of+the+International+Conference+on+
Computational+Science+(ICCS+2013).+Dynamic+Data@Driven+Application+Systems+
(DDDAS+2013)+Workshop,!pages!2036=2045,!May!2013.!

3. Shigeru!Imai!and!Carlos!A.!Varela.!Programming&SpatioLTemporal&Data&
Streaming&Applications&with&HighLLevel&Specifications.!In!3rd+ACM+
SIGSPATIAL+International+Workshop+on+Querying+and+Mining+Uncertain+
Spatio@Temporal+Data+(QUeST)+2012,!Redondo!Beach,!California,!USA,!
November!2012.!

4. Shigeru!Imai!and!Carlos!A.!Varela.!A&Programming&Model&for&SpatioL
Temporal&Data&Streaming&Applications.!In!Dynamic+Data@Driven+
Application+Systems+(DDDAS+2012),!ICCS,!Omaha,!Nebraska,!pages!1139=1148,!
June!2012.!

5. Shigeru!Imai!and!Carlos!A.!Varela.!Dynamic&DataLDriven&Avionics&Systems&
with&Stochastic&Error&Detection&and&Correction.!Invited!book!chapter!
in!Dynamic+Data+Driven+Application+Systems+(DDDAS),!editor!Frederica!
Darema,!submitted,!to!appear!mid=2014.!

!
Software&and&Data:!
This!report!includes!an!attachment!with!all!the!PILOTS!software!and!experimental!
data!used!during!this!research!and!reported!in!the!published!articles.!!The!software!
is!open=source!and!available!at!the!following!web!site:!!

http://wcl.cs.rpi.edu/pilots/!
!

Self-Healing Spatio-Temporal Data Streams
Using Error Signatures

Shigeru Imai, Richard Klockowski, Carlos A. Varela
Department of Computer Science, Rensselaer Polytechnic Institute

110 Eighth Street, Troy, NY 12180, USA
Email: {imais,klockr,cvarela}@cs.rpi.edu

Abstract—Spatio-temporal data streams generated from sen-
sors can be erroneous and could lead to serious problems. For
example, pitot tubes icing which occurred to Air France flight
447 (AF447) in June 2009 led to faulty airspeed readings and
eventually caused a fatal accident killing all 228 people on
board. As an effort to develop self-healing spatio-temporal data
stream systems, we have developed a highly declarative program-
ming language called PILOTS that enables error detection and
data correction based on error signatures. Error signatures are
mathematical function patterns with constraints and are used to
stochastically identify and categorize errors in redundant spatio-
temporal data streams. In this paper, we refine the error detection
and correction methods previously reported by the authors and
apply these methods to real flight data of a private Cessna
flight and the AF447 flight. The results show that the error
detection and correction methods successfully work for both sets
of flight data. For the private Cessna flight, three error scenarios
are simulated: pitot tube failure, GPS failure, and simultaneous
pitot tube and GPS failures. The error detection accuracy is
approximately 93% and the response time to correct data is at
most 5 seconds. For the AF447 flight, 162 seconds of available
flight data including the pitot tubes failure is collected from
the accident report and examined accordingly. The pitot tube
failure of the AF447 flight is successfully detected and corrected
after 5 seconds from the beginning of the failure. Overall error
mode detection accuracy reaches 96.31%. Furthermore, our
simulations show that the system never corrects data incorrectly,
i.e., all inaccurate mode detections produce either unknown or
unrecoverable errors. These results suggest that the presented
error signature-based detection and correction methods can fix
erroneous data readings caused by sensor failures within a few
seconds and thereby keep flight systems working properly. Such
self-healing flight systems could have prevented the tragic AF447
accident from happening and saved the lives of all crew members
and passengers.

I. INTRODUCTION

Airplanes are one of the most complicated machines to
operate since pilots have to deal with a lot of information
provided from the instruments in a cockpit. In the event of
instrument failures, making the right decision becomes even
more difficult because of potentially partially erroneous data.
In the worst case scenario, misinterpreting the data could lead
to deadly accidents such as the Air France flight 447 (AF447)
tragedy of 2009 in which 228 people were fatally injured [1].

The aircraft of the AF447 flight crashed in the Atlantic
Ocean due to ice which temporarily formed in the pitot
tubes causing erroneous airspeed readings, and the subsequent
inability of the auto-pilot and human pilots to recover. The
accident could have been prevented by endowing the flight

system with the ability to understand the following data
relationship:

−→vg = −→va +−→vw. (1)

where −→vg ,−→va, and −→vw represent the ground speed, the airspeed,
and the wind speed vectors. These speeds are obtained through
independent data collection methods: the ground speed is
typically computed from Global Positioning Satellite (GPS)
system data, the airspeed is computed from air pressure
measurements by pitot tubes, and the wind speed from weather
forecast computer models. Since any one of the three speeds
can be calculated using the other two with Equation (1), they
are redundant to each other. Using the available redundancy
in the data, we can detect and correct errors. Note that we use
this speed example throughout the paper.

We have created a highly declarative programming language
called PILOTS (ProgrammIng Language for spatiO-Temporal
Streaming applications) [2], [3], [4] that enables data correc-
tion and detection of spatio-temporal data streams based on
data redundancy. Spatio-temporal data streams refer to data
streams whose items include associated spatial and temporal
coordinates, often viewed as meta data. Examples include
temperature measurements, financial stock values, gas prices,
surveillance camera imaging, and aircraft sensor readings. A
PILOTS program may specify 1) how to view heterogeneous
data stream sources as homogeneous spatio-temporal data
streams, 2) how to correct the data streams based on error
signatures, and 3) how to output values of interest based on
the corrected data streams. Error signatures are mathematical
function patterns with constraints and are used to stochastically
identify and categorize errors. The PILOTS programming
language enables high-level development of applications to
handle spatio-temporal data streams and ultimately assist hu-
mans in making better decisions.

The PILOTS project has evolved gradually to date. First,
the design of the PILOTS programming language and the
concept of error signatures were proposed [2]. Next, a run-
time implementation of PILOTS capable of data selection
and error signatures computation was presented [3]. Thirdly,
an error detection method and a runtime implementation of
PILOTS with error detection and correction capability were
presented [4]. In this paper, we overview PILOTS version
0.2.3 [5] and mathematically refine the error signature-based
detection and data correction methods. Also, we evaluate error

detection performance with real data of a private Cessna flight
and the AF447 flight.

The rest of the paper is organized as follows. Section II
describes technical background of the paper including methods
and software for error detection and correction. Section III
talks about error signatures for commonly used speed data in
aviation and how to express these error signatures in PILOTS
programs. Section IV shows performance metrics and results
of error detection performance for a private Cessna flight
and the AF447 flight data. Finally, we show related work in
Section V and conclude the paper in Section VI with potential
future directions.

II. TECHNICAL BACKGROUND

A. Error Detection and Correction Methods
The error detection and correction methods [4] are refined

and described in detail. The basic idea is that the algorithm
recognizes the shape of an error function, identifies a type of
error, and corrects associated data values if possible.

Error function An error function is an arbitrary function
that computes a numerical value from independently measured
input data. It is used to examine the validity of redundant data.
If the value of an error function is zero, we interpret it as no
error in the given data.

A vector −→v can be defined by a tuple (v,α), where v is
the length of −→v and α is the angle between −→v and a base
vector. Following this expression, −→vg ,−→va, and −→vw are defined
as (vg,αg), (va,αa), and (vw,αw) respectively as shown in
Figure 1. To examine the relationship in Equation (1), we
can compute −→vg by applying trigonometry to △ABC. We can
define an error function as the difference between measured
vg and computed vg as follows:

e(−→vg ,−→va,−→vw) = |−→vg − (−→va +−→vw)|
= vg −

√
v2a + 2vavw cos(αa − αw) + v2w.

(2)

!"#$%&''() "*($'++,+

!-#$.'/'0/'(1,(')

Fig. 1. Trigonometry applied to the ground speed, airspeed, and wind speed.

The values of input data are assumed to be sampled period-
ically from corresponding spatio-temporal data streams. Thus,
an error function e changes its value as time proceeds and can
also be represented as e(t).

Error signatures An error signature is a constrained math-
ematical function pattern that is used to capture the charac-
teristics of an error function e(t) under a specific condition.
Using a vector of constants K̄ = ⟨k1, . . . , km⟩, a function f ,
and a set of constraint predicates P̄ = {p1(K̄), . . . , pm(K̄)},
the error signature S(K̄, f(t), P̄ (K̄)) is defined as follows:

S(K̄, f(t), P̄ (K̄)) = {f(t)|p1(K̄) ∧ · · · ∧ pm(K̄)}. (3)

For example, an interval error signature can be defined as:

SI(K̄, f(t), Ī(K̄, Ā, B̄)) = {f(t)| (4)
a1 ≤ k1 ≤ b1, . . .

am ≤ km ≤ bm},

where Ā = ⟨a1, . . . , am⟩ and B̄ = ⟨b1, . . . , bm⟩. For example,
when f(t) = t+ k, K̄ = ⟨k⟩, Ā = ⟨2⟩, and B̄ = ⟨5⟩, the error
signature SI contains all linear functions with slope 1, and
crossing the Y-axis at values [2, 5] as shown in Figure 2. On
the other hand, for f(t) = 0, SI only contains the constant
function f(t) = 0.

!

!

"

!
!
!

"

#

!
"#
$%
&
%#
%'
%(

!"
#$
%&
%#
%'
%)

Fig. 2. Error signature SI with a linear function f(t) = t+ k, 2 ≤ k ≤ 5.

Given an error signature S(K̄, f(t), P̄ (K̄)), we enumerate
its elements as error signature samples, i.e.,

s(t, K̄) = f(t) s.t. s(t, K̄) ∈ S(K̄, f(t), P̄ (K̄)). (5)

An error signature sample is thus a particular function sat-
isfying the constraints defined by an error signature. For the
interval error signature SI , a sample sI(t, ⟨3⟩) is f(t) = t+3.

Mode likelihood vectors Given a set of error signatures
{S0, . . . , Sn}, where S0 corresponds to the normal mode sig-
nature with no errors, we calculate δi(t), the distance between
the measured error function e(t) and each error signature Si

by:

δi(t) = min
K̄

∫ t

t−ω
|e(t)− si(t, K̄)|dt. (6)

where ω is the window size and si(t, K̄) ∈ Si. The smaller
the distance δi(t), the closer the raw data is to the theoretical

signature Si. We define the mode likelihood vector as L(t) =
⟨l0(t), l1(t), . . . , ln(t)⟩ where each li(t) is defined as:

li(t) =

{
1, if δi(t) = 0
min{δ0(t),...,δn(t)}

δi(t)
, otherwise.

(7)

Observe that for each li ∈ L, 0 < li ≤ 1 where li represents
the ratio of the likelihood of signature Si being matched with
respect to the likelihood of the best signature. At each time
stamp, the maximum two elements li and lj of the mode
likelihood vector, where li ≥ lj , are inspected in order to
determine the error mode. Because of the way L(t) is created,
the maximum entry li will always be equal to 1. Given a
threshold τ ∈ (0, 1) we check for one likely candidate that
is sufficiently more likely than its successor by ensuring that
lj ≤ τ . Thus we determine the correct mode by choosing the
error signature, and error mode i, corresponding to li which is
Si. If i = 0 then the system is in normal mode. If lj > τ , then
regardless of the value of j, unknown error mode is assumed.

Error correction It is problem dependent if a known error
mode i is recoverable or not. If there is a mathematical rela-
tionship between an erroneous value and other independently
measured values, the erroneous value can be replaced by a
new value computed from the other independently measured
values. In the case of the speed example used in Equations (1)
and (2), if the ground speed vg is detected as erroneous, its
corrected value vcg can be computed by the airspeed and wind
speed as follows:

vcg =
√
v2a + 2vavw cos(αa − αw) + v2w. (8)

B. Error Detection and Correction Software

PILOTS (ProgrammIng Language for spatiO-Temporal
data Streaming applications) is a programming language
specifically designed for analyzing data streams incorporating
space and time. Using PILOTS, application developers can
easily program an application that handles spatio-temporal
data streams by writing a high-level (declarative) program
specification. The PILOTS code includes an inputs section to
specify the data streams and how data is to be extrapolated
from incomplete data, typically using declarative geometric
criteria (e.g., closest, interpolate, euclidean keywords) [3].
It includes outputs and errors sections to specify the data
streams to be produced by the application, as a function of
the input streams with a given frequency. If a detected error is
recoverable, output values are computed from corrected input
data, otherwise original input data is used. The signatures and
correct sections, enable PILOTS programmers to specify error
signatures for known error conditions, as well as the function
to use to correct the data automatically if such data errors are
found.1

Figure 3 shows the architecture of the PILOTS runtime
system, which implements the error detection and correction
methods described in the previous section. It consists of

1Parameters τ and ω—for specifying threshold and time window
respectively—can be given in command-line options.

three parts: the Data Selection, the Error Analyzer, and the
Application Model modules.

The Application Model obtains homogeneous data streams
(d′1, d

′
2, . . . , d

′
N) from the Data Selection module, and

then it generates outputs (o1, o2, . . . , oM) and data errors
(e1, e2, . . . , eL). The Data Selection module takes heteroge-
neous incoming data streams (d1, d2, . . . , dN) as inputs. Since
this runtime is assumed to be working on moving objects, the
Data Selection module is aware of the current location and
time. Thus, it returns appropriate values to the Application
Model by selecting or interpolating data in time and location
depending on the data selection method specified in the
PILOTS program.

The ErrorAnalyzer collects the latest ω error values from
the Application Model and keeps analyzing errors based on
the error signatures. If it detects a recoverable error, then it
replaces an erroneous input with the corrected one by applying
a corresponding error correction equation. The Application
Model computes the outputs based on the corrected inputs
produced from the Error Analyzer.

!
!"
"#$%&$%'$%()

!
#"
"#$%&$%'$%()

!
$"
"#$%&$%'$%()

!
!
!

!"#$"#%

!""#$%&'$()

*(+,#

!"#$%&"'(

)*+*(,+-.*%/

01+'$&"'(

)*+*(,+-.*%/

*
#

*
!

!
!
!

*
%

+
#

+
!

!
!
!

+
&

&''('%

-&'&

.,#,%'$()

!"#$"%&''()&)')&')'%*"+,-,"('.)&"

!
!
,

!
#
,

!
$
,

/00(01

-,',%'$()

!""#"$%&'()*+",-

!
!
!

!"##$%&

'()$

!"##$%&

*+,-&(+%
-%.%/-

'
$%-

!
$%!$%-

(
0

.#/,$0

/01*$&"'2,3"2,400('5"+&0.

1%.%23
'
$%3

!
$%444$%3

(
5

12)'$,""#"

"%.%+/%0+#

/00(01

2(00,%'$()

#$,+1$#-23$0+#

/0.."+&'()&)',-'

."+05".)62"

)+4$

"%#$,+1$#-23$

%+0$##+#

2--$-(3"*456.-

!+##$,&$405-&-

Fig. 3. Data streaming architecture with error detection and correction.

III. ERROR SIGNATURES FOR SELF-HEALING SPEED DATA

In this section, we derive a set of error signatures for the
speed example used in the previous sections. Also, we present
a PILOTS program implementing the error signatures and
corresponding error correction equations.

A. Error Signatures

We consider the following four error modes: 1) normal (no
error), 2) pitot tube failure due to icing, 3) GPS failure, 4) both
pitot tube and GPS failures. Suppose the airplane is flying at
airspeed va. For computing error signatures for different error
conditions, we will assume that other speeds as well as failed
airspeed and ground speed can be expressed as follows.

• ground speed: vg ≈ va.
• wind speed: vw ≤ ava, where a is the wind to airspeed

ratio.

• pitot tube failed airspeed: blva ≤ vfa ≤ bhva, where bl
and bh are the lower and higher values of pitot tube
clearance ratio and 0 ≤ bl ≤ bh ≤ 1. 0 represents a
fully clogged pitot tube, while 1 represents a fully clear
pitot tube.

• GPS failed ground speed: vfg = 0.
We assume that when a pitot tube icing occurs, it is

gradually clogged and thus the airspeed data reported from
the pitot tube also gradually drops and eventually remains at
a constant speed while iced. This resulting constant speed is
characterized by ratio bl and bh. On the other hand, when a
GPS failure occurs, the ground speed suddenly drops to zero.
This is why we model the failed ground speed as vfg = 0.

In the case of pitot tube failure, let the ground speed, wind
speed, and airspeed be vg = va, vw = ava, and vfa = bva. The
error function (2) can be expressed as follows:

e = va −
√
v2a(b

2 + 2ab cos(αa − αw) + a2).

Since −1 ≤ cos(αa − αw) ≤ 1, the error is bounded by the
following:

va −
√
v2a(a+ b)2 ≤ e ≤ va −

√
v2a(a− b)2

(1− a− b)va ≤ e ≤ (1− |a− b|)va. (9)

In the case of GPS failure, let the ground speed, wind speed,
and airspeed be vfg = 0, vw = ava, and va = va. The error
function (2) can be expressed as follows:

e = 0−
√
v2a(1 + 2a cos(αa − αw) + a2).

Similarly to the pitot tube failure, we can derive the following
error bounds:

−(a+ 1)va ≤ e ≤ −|a− 1|va. (10)

We can derive error bounds for the normal and both failure
cases similarly. Applying the wind to airspeed ratio a and the
pitot tube clearance ratio bl ≤ b ≤ bh to the constraints ob-
tained in Inequations (9) and (10), we get the error signatures
for each error mode as shown in Table I.

TABLE I
ERROR SIGNATURES FOR SPEED DATA.

Mode Error Signature
Function Constraints

Normal e = k k ∈ [−ava, ava]
Pitot tube failure e = k k ∈ [(1− a− bh)va, (1− |a− bl|)va]

GPS failure e = k k ∈ [−(a+ 1)va,−|a− 1|va]
Both failures e = k k ∈ [−(a+ bh)va,−|a− bl|va]

When a = 0.1, bl = 0.2, and bh = 0.33, the error signatures
shown in Table I are visually depicted in Figure 4.

B. PILOTS program
A PILOTS program called speedcheck implementing the

error signatures shown in Table I is presented in Figure 5. This
program checks if the wind speed, airspeed, and ground speed
are correct or not, and computes a crab angle, which is used
to adjust the direction of the aircraft to keep a desired ground

!"#$
!

!

%!"#$
!

!"&'$
!

!"($
!

%!")*$
!

%!"($
!

%#"#$
!

"!"#$%&

'"()*+%,&-#./

0,("(*(-1.*+%,&-#.

203*+%,&-#.

Fig. 4. Error Signatures for speed data (a = 0.1, bl = 0.2, and bh = 0.33).

track. For this program to be applicable to a Cessna 182-RG,
we use a cruise speed of 162 knots as va. Each section of the
program is explained in order:

• inputs: All the speed and angle data required to compute
the error and crab angle are defined here with data se-
lection methods. Since heterogeneous input data streams
of air_speed, air_angle, ground_speed and
ground_angle are defined for 2D regions and
time, euclidean(x,y) and closest(t) select data
which is closest to the current location in 2D eu-
clidean space and then closest to the current time. For
wind_speed and wind_angle, since they are defined
for 3D regions and time, interpolate(z,2) is fi-
nally used to get linearly interpolated values in the Z-
axis using two data points after euclidean(x,y) and
closest(t) are applied.

• outputs: The crab angle and corrected speed data are
computed every second.

• errors: The error function e defined in Equation (2) is
computed. The angle signs are reversed in the formu-
lae, because in mathematics, angles increase counter-
clockwise (with 0◦ representing East) while in aviation,
angles increase clockwise (with 0◦ representing North).

• signatures: There are four error signatures {S0, S1,
S2, S3} associated with the error function e. They are
all constrained by a constant k with lower and upper
bounds based on the error signatures shown in Table I.

• correct: The error modes 1 and 2, which are identified by
S1 and S2, can be corrected using the equations defined
for the airspeed and ground speed. If the error mode 3
corresponding to S3 is detected, it is not possible to
correct two variables at the same time, thus this error
is unrecoverable.

IV. EVALUATION

We apply the error signatures defined in Section III to two
sets of real flight data. The first one is a private flight using

✬

✫

✩

✪

program speedcheck;
inputs

wind_speed, wind_angle (x,y,z,t) using
euclidean(x,y), closest(t), interpolate(z,2);

air_speed, air_angle (x,y,t) using
euclidean(x,y), closest(t);

ground_speed, ground_angle (x,y,t) using
euclidean(x,y), closest(t);

outputs
crab_angle:

arcsin(wind_speed * sin(wind_angle - air_angle) /
sqrt(air_speedˆ2 + 2 * air_speed * wind_speed *

cos(wind_angle - air_angle) + wind_speedˆ2))
at every 1 sec;

air_speed_out: air_speed at every 1 sec;
ground_speed_out: ground_speed at every 1 sec;
wind_speed_out: wind_speed at every 1 sec;

errors
e: ground_speed -

sqrt(air_speedˆ2 + wind_speedˆ2 + 2 * air_speed *
wind_speed * cos(wind_angle - air_angle));

signatures
/* v_a = 162 knots */
S0(k): e=k, -16.2<=k, k<= 16.2 "Normal";
S1(k): e=k, 91.8<=k, k<= 145.8 "Pitot tube failure";
S2(k): e=k, -178.2<=k, k<=-145.8 "GPS failure";
S3(k): e=k, -70.2<=k, k<= -16.2 "Both failures";

correct
S1: air_speed = sqrt(ground_speedˆ2 + wind_speedˆ2

2 * ground_speed * wind_speed *
cos(ground_angle - wind_angle));

S2: ground_speed = sqrt(air_speedˆ2 + wind_speedˆ2
2 * air_speed * wind_speed *
cos(wind_angle - air_angle));

end

Fig. 5. A declarative specification of the speedcheck PILOTS program.

a Cessna 182-RG identified by N756VH [6] from Albany,
NY to Fort Meade, MD on April 3rd, 2012. The other is
the Air France flight 447 using an Airbus A330-203 which
took off from Rio de Janeiro bound for Paris on June 1st,
2009. To simulate the failures mentioned in Section III, we
added corresponding errors to the N756VH Cessna flight data;
however, we used the real pitot tube failure data for the
AF447 flight. PILOTS programs’ error detection accuracy and
response time to mode changes are evaluated.

A. Performance Metrics

• Accuracy: This metric is used to evaluate how accu-
rately the algorithm determines the true mode. Assum-
ing the true mode transition m(t) is known for t =
0, 1, 2, . . . , T , let m′(t) for t = 0, 1, 2, . . . , T be the mode
determined by the error detection algorithm. We define
accuracy(m,m′) = 1

T

∑T
t=0 p(t), where p(t) = 1 if

m(t) = m′(t) and p(t) = 0 otherwise.
• Maximum/Minimum/Average Response Time: This

metric is used to evaluate how quickly the algorithm
reacts to mode changes. Let a tuple (ti,mi) represent
a mode change point, where the mode changes to mi

at time ti. Let M = {(t1,m1), (t2,m2), . . . , (tN ,mN)}
and M ′ = {(t′1,m′

1), (t
′
2,m

′
2), . . . , (t

′
N ′ ,m′

N ′)} be the
sets of true mode changes and detected mode changes
respectively. For each i = 1 . . . N , we can find the

smallest t′j such that (ti ≤ t′j) ∧ (mi = m′
j); if not

found, let t′j be ti+1. The response time ri for the true
mode mi is given by t′j − ti. We define the maximum,
minimum, and average response times by max1≤i≤N ri,
min1≤i≤N ri, and 1

N

∑N
i=1 ri respectively.

B. Experiment 1: N756VH Cessna Flight
1) Flight data: Flight data is collected through the follow-

ing independent sources:
• ground speed: Flight track log provided by

FlightAware [6].
• airspeed: Manually recorded by the pilot.
• wind speed: Weather forecast information provided by

National Weather Service [7].
The flight duration is 1 hour 41 minutes. The collected

speed data and error computed by Equation (2) are shown
in Figure 6. Notice that the airspeed data during take off and
landing is not accurate due to the data collection mechanism.

!"##

#

"##

$##

"### $### %### &### '### (###

!
"
#
#
$
%&
%'
(
(
)
(
%*
+
,
)
-
.
/

!"#$%&'$()

!"#$%&&'

(#)*+',$%&&'

&##)#

-"+',$%&&'

Fig. 6. Collected speeds and error for the N756VH 03-Apr-2012 KALB-
KFME flight (normal).

2) Experimental Settings: Using the speedcheck PI-
LOTS program shown in Figure 5, the 6060 seconds (=1 hour
41 minutes) of flight departing from Albany, NY and landing
at Fort Meade, MD are recreated. Three types of error are
simulated as shown below. In each case, all data streams except
for erroneous one(s) are actual. Defined error modes are: 0
for unknown, 1 for normal, 2 for pitot tube failure, 3 for GPS
failure, and 4 for both failures.

• Pitot tube failure: 2400 seconds after the departure, the
airspeed drops from 162 knots to 50 knots within 10
seconds and stays at 50 knots until landing. The set of
true mode changes is given by M = {(1, 1), (2401, 2)}.

• GPS failure: 2400 seconds after the departure, the ground
speed drops from 171 knots to 0 knots immediately and
stays at 0 knots until landing. The set of true mode
changes is given by M = {(1, 1), (2401, 3)}.

• Both pitot tube and GPS failures: The above two
speed changes happen simultaneously at 2400 seconds
after the departure. Both speeds remain failed until
landing. The set of true mode changes is given by
M = {(1, 1), (2401, 4)}.

To find out the effect of the window size ω and threshold
value τ on the accuracy and response time, we measure these
metrics for window sizes ω ∈ {1, 2, 4, 8, 16} and threshold
τ ∈ {0.2, 0.4, 0.6, 0.8}. Note that since there is only one error
mode change in each true mode changes set, we can get only
one response time result for each simulated error case.

3) Results: Results of the accuracy and response time are
are shown in Figure 7. For all the three cases, when ω = 1
and τ = 0.8, the best results are observed as follows: accuracy
= 0.9294 and response time = 4 seconds for the pitot tube
failure, accuracy = 0.935 and response time = 0 seconds for
the GPS failure, and accuracy = 0.9342 and response time =
5 seconds for both failures. Accuracy is not even higher due
to airspeed data during takeoff and landing which was not
collected because the pilot was busy operating the airplane,
which makes the system incorrectly detect a both failure mode.
Because the airspeed gradually drops, it takes a few seconds
to detect it as a pitot tube failure; however, a GPS failure is
immediately detected since the ground speed promptly drops
to zero when it happens. This is why the response time for the
GPS failure is better than the other two cases. Since the used
error signature sets are non-overlapping constant functions
(i.e., e = k), even though smaller window sizes are normally
noise-prone compared to bigger window sizes, past data is
not necessary to determine the correct error modes. In this
experiment, noise on the error is not big enough to jump out
of the boundaries defined by error signature sets, therefore
ω = 1 gives the best results.

In Figure 7(b-1) for the GPS failure, when τ = 0.2,
accuracy is unusually low compared to the other two failure
cases. This occurs because too low a threshold makes the
normal and GPS failure modes compete against each other
in the landing phase and thus the resulting mode falls into
unknown mode for the last 600 seconds.

The transitions of the corrected speed and detected modes
that show the best accuracy are shown in Figures 8 (pitot tube
failure), 9 (GPS failure), and 10 (both failures) respectively.
For the first 390 seconds, the error mode is detected wrongly
in all three cases; the true modes are 1 (normal mode)
whereas the detected modes are 4 (both failures) during this
period. These wrong mode detections are originated from
the erroneously recorded airspeed. Other than that, the error
detection method works pretty well for all three cases.

Detected modes go into the unknown mode for a short
period around 2401 seconds for both pitot tube failure and
both failures. Since the airspeed takes a few seconds to drop,
during that time, the normal and pitot tube failure modes are
competing against each other for the pitot tube failure case.
For the both failures case, the GPS failure and both failures
modes are competing. Unlike the other two cases, the ground
speed drops immediately for the GPS failure, and there is no
conflict with other error modes, thus the GPS failure mode is
correctly detected without going into the unknown mode.

C. Experiment 2: Air France Flight 447
1) Flight Data: The ground speed and airspeed are col-

lected based on Appendix 3 in the final report of Air France
flight 447 [1]. Note that the (true) airspeed was not recorded in
the flight data recorder so that we computed it from recorded
Mach (M) and static air temperature (SAT) data. The airspeed
was obtained by using the relationship: va = a0M

√
SAT/T0,

where a0 is the speed of sound at standard sea level (661.47

!"##

#

"##

$##

"### $### %### &### '### (###

!
"
#
#
$
%&
%'
(
(
)
(
%*
+
,
)
-
.
/

!"#$%&'$()

!"#$%&&'

()#"*"+!,-

!"#$%&&'

(.!",&'-

!"#$%&&'

(/)##&/0&'-

&##)#

#

"

$

%

&

"### $### %### &### '### (###

0
)
$
#

!"#$%&'$()

!" #$%&'

("')*+

,"'-.%$%'%/#0

1"'2$3456

7"'/282$92

!"#$%&''() "*($'++,+

!-#$.'/'0/'(1,(')

Fig. 8. Corrected airspeed and detected modes for the N756VH 03-Apr-2012
KALB-KFME flight (pitot tube failure, τ = 0.8,ω = 1).

!

"

#

$

%

! "!!! #!!! $!!! %!!! &!!! '!!!

!
"
#
$

!"#$%&'$()

!" #$%&'

("')*+

,"'-.%$%'%/#0

1"'2$3456

7"'/282$92

(#!!

("!!

!

"!!

#!!

! "!!! #!!! $!!! %!!! &!!! '!!!

%
&
$
$
#
'(
')
*
*
"
*
'+
,
-
"
.
/
0

!"#$%&'$()

!"#$%&'()**&

!"#$%&'()**&

+,-./*&0

!"#$%&'()**&

+1#""*12*&0

*""#"

!"#$%&''() "*($'++,+

!-#$.'/'0/'(1,(')

Fig. 9. Corrected ground speed and detected modes for the N756VH 03-
Apr-2012 KALB-KFME flight (GPS failure, τ = 0.8,ω = 1).

!"##

!$##

#

$##

"##

$### "### %### &### '### (###

!
"
#
#
$
%&
%'
(
(
)
(
%*
+
,
)
-
.
/

!"#$%&'$()

!"#$%&''(

)*!"+'(,

-#./0(

%&''(

)*!"+'(,

'##.#

#

$

"

%

&

$### "### %### &### '### (###

0
)
$
#

!"#$%&'$()

!" #$%&'

("')*+

,"'-.%$%'%/#0

1"'2$3456

7"'/282$92

!"#$%&''() "*($'++,+

!-#$.'/'0/'(1,(')

Fig. 10. Uncorrected speeds and detected modes for the N756VH 03-Apr-
2012 KALB-KFME flight (pitot tube and GPS failure, τ = 0.8,ω = 1).

!"#

!"$

!"%

!"&

!"'

(

! # (! (#)!

!
"
"
#
$
%
"
&

!"#$%&'(")*'+

*+,+!")

*+,+!"-

*+,+!"$

*+,+!"&

!

#

(!

(#

)!

! # (! (#)!

!
"
#
$
%
&
#
"
'
(
)
*
"
'

+
#
"
,
-
'

!"#$%&'(")*'+

*+,+!")

*+,+!"-

*+,+!"$

*+,+!"&

!"#$%&'(()*"(+&# ,-./.&0)12 3"-4)*2

!"#5%&6278/972 0-:2&# ,-./.&0)12&3"-4)*2

!"#

!"$

!"%

!"&

!"'

(

! # (! (#)!

!
"
"
#
$
%
"
&

!"#$%&'(")*'+

*+,+!")

*+,+!"-

*+,+!"$

*+,+!"&

!

#

(!

(#

)!

! # (! (#)!

!
"
#
$
%
&
#
"
'
(
)
*
"
'

+
#
"
,
-

!"#$%&'(")*'+

*+,+!")

*+,+!"-

*+,+!"$

*+,+!"&

!1#$%&'(()*"(+&# ;,<&3"-4)*2

!1#5%&6278/972&0-:2&# ;,<&3"-4)*2

!"#

!"$

!"%

!"&

!"'

(

! # (! (#)!

!
"
"
#
$
%
"
&

!"#$%&'(")*'+

*+,+!")

*+,+!"-

*+,+!"$

*+,+!"&

!

#

(!

(#

)!

! # (! (#)!

!
"
#
$
%
&
#
"
'
(
)
*
"
'

+
#
"
,
-

!"#$%&'(")*'+

*+,+!")

*+,+!"-

*+,+!"$

*+,+!"&

!(#$%&'(()*"(+&# =/.> 3"-4)*27

!(#5%&6278/972&0-:2&# =/.>&3"-4)*27

Fig. 7. Accuracy and response time for the N756VH 03-Apr-2012 KALB-KFME flight

knots) and T0 is the temperature at standard sea level (288.15
Kelvin). Independent wind speed information was not recorded
either. According to the description from page 47 of the final
report: “(From the weather forecast) the wind and temperature
charts show that the average effective wind along the route
can be estimated at approximately ten knots tail-wind.” We
followed this description and created the wind speed data
stream as ten knots tail wind.

2) Experimental Settings: According to the final report,
speed data was provided from 2:09:00 UTC on June 1st
2009 and it became invalid after 2:11:42 UTC on the same
day. Thus, we examine the valid 162 seconds of speed data
including a period of pitot tube failure which occurred from
2:10:03 to 2:10:36 UTC. We also use the speedcheck
PILOTS program shown in Figure 5 except for constraints
values in signatures which use va = 470 knots, the cruise
airspeed of the AF447 flight. Defined error modes are the
same as Experiment 1, so the set of true mode changes
is defined as M = {(1, 1), (64, 2), (98, 1)}. The accuracy
and average response time are investigated for window sizes
ω ∈ {1, 2, 4, 8, 16} and threshold τ ∈ {0.2, 0.4, 0.6, 0.8}.

3) Results: Results of the accuracy and maximum/mini-
mum/average response times are shown in Figure 11. Same
as Experiment 1, the best results, accuracy = 0.9631, maxi-
mum/minimum/average response times = 5/0/2.5 seconds, are
observed when ω = 1 and τ = 0.8. Overall trends of the
accuracy and response time are same as Experiment 1 because
of the nature of the error signature set.

The transitions of the corrected speed and detected modes
that show the best accuracy with ω = 1 and τ = 0.8 are
shown in Figure 12. Looking at Figure 12(b), the pitot tube
failure is successfully detected from 69 to 97 seconds except
for the interval 64 to 69 seconds due to the slowly decreasing
airspeed. The response time for the normal to pitot tube failure
mode is 5 seconds and for the pitot tube failure to normal
mode is 0 seconds (thus the average response time is 2.5
seconds). From Figure 12(a), the airspeed successfully starts
to get corrected at 69 seconds and seamlessly transitions to
the normal airspeed when it recovers at 98 seconds.

!"#

!"$

!"%

!"&

!"'

(

! # (! (#)!

!
"
"
#
$
%
"
&

!"#$%&'(")*'+

*+,+!")

*+,+!"-

*+,+!"$

*+,+!"&

!"#$%&&'("&)$

!

#

(!

(#

)!

! # (! (#)!

!
"
#
$
%
&
'
(
)
*
'
&
$

+
,
-
&
$.
'
&
/
0

!"#$%&'(")*'+

*+,+!")

*+,+!"-

*+,+!"$

*+,+!"&

!*#$+",-.'.$/0123410 5-.0

!

#

(!

(#

)!

! # (! (#)!

!
,
*
$
%
&
'
(
)
*
'
&
$

+
,
-
&
$.
'
&
/
0

!"#$%&'(")*'+

*+,+!")

*+,+!"-

*+,+!"$

*+,+!"&

!&#$+-4-.'. /0123410 5-.0

!

#

(!

(#

)!

! # (! (#)!1
2
3
$%
&
'
(
)
*
'
&
$
+
,
-
&
$

.
'
&
/
0

!"#$%&'(")*'+

*+,+!")

*+,+!"-

*+,+!"$

*+,+!"&

!6#$%70("80$/0123410 5-.0

Fig. 11. Accuracy and response time for AF447 flight.

!"##

#

"##

$##

%##

&##

'##

(##

$# &# (#)# "## "$# "&# "(#

!
"
#
#
$
%&
%'
(
(
)
(
%*
+
,
)
-
.
/

!"#$%&'$()

!"#$%&&'

()*##&)+&',

!"#$%&&'

(-!".&',

&##*#

#

"

$

%

&

$# &# (#)# "## "$# "&# "(#

0
)
$
#

!"#$%&'$()

!" #$%&'

("')*+

,"'-.%$%'%/#0

1"'2$3456

7"'/282$92

!"#$%&''() "*($'++,+

!-#$.'/'0/'(1,(')

Fig. 12. Corrected airspeed and detected modes for AF447 flight.

V. RELATED WORK

There are several systems that combine stream processing
and data base management, i.e., Data Stream Management
Systems or DSMS, such as STREAM [8], Aurora [9], and
TelegraphCQ [10]. They are designed to execute SQL-like
queries to unbounded continuous incoming data streams and
output events of interest. Microsoft StreamInsight is a DSMS-

based system and has been extended to support spatio-
temporal streams [11]. Also, the concept of the moving object
data base (MODB) which adds support for spatio-temporal
data streaming to DSMS is discussed in [12]. These DSMS-
based spatio-temporal stream management systems support
general continuous queries for multiple moving objects. Our
streaming data analytics to detect errors based on signa-
tures and correct data on the fly is beyond the scope of a
purely declarative SQL-based query approach. Furthermore,
our domain-specific approach enables highly declarative de-
scription of input-output relationships between streams, error
functions, error signatures, and data correction functions using
the PILOTS programming language.

Distributed streaming systems have been studied in the con-
text of cloud computing [13], [14]. Our data error correction
methods could be useful for distributed settings as well by
connecting multiple distributed PILOTS applications.

VI. CONCLUSION AND FUTURE DIRECTIONS

We define a general error signature set for aviation speed
data and evaluate error detection performance of PILOTS
programs with real flight data. We find that the accuracy and
response time improve as the threshold τ increases. The reason
of this behavior is that there are some cases in which there
are two competing modes whose likelihood values are close
to each other, and due to the closeness, the mode detection
algorithm tends to regard it as an unknown error mode. Higher
threshold values are more tolerant to multiple competing
modes, thus give better results. Unsurprisingly, there is a
positive correlation between the window size and response
times for all the threshold values. This is an intuitive result
because the less the error detection algorithm uses past data,
the more responsive it becomes to mode changes. In addition,
a faster average response time leads to a better accuracy
result since the error detection algorithm cannot predict mode
changes, but only react to them. That is, a smaller window
size implies better accuracy. This is true because our designed
error signature set produces nearly orthogonal mode likelihood
vectors. Also, it is noteworthy that our error detection and data
correction methods never correct data incorrectly.

When computing mode likelihood vectors, time to compute
distances by Equation (6) can be significant due to the expo-
nential growth of the search space as the size of the constants
set K̄ increases. To use the presented error detection and cor-
rection methods in larger-scale real-time systems, techniques
to bound the running time must be devised.

Future research directions include applying the error
signature-based error detection and correction methods to
other flight accidents, e.g., those fuel sensor reading errors.
Also developing PILOTS flight systems that process real-time
data from external sources such as 3D terrain data, updated
weather, and information from other airplanes. More and more
data are expected to be available in cockpits in the near
future [15], and thus automated data analysis systems will
become even more crucial to both manned and unmanned
aerial vehicles. We envision smarter and safer flight systems

processing massive data in real-time. Such systems need to
reason about spatial and temporal data and constraints and
give the pilots better information to make more accurate
judgments during critical moments. The presented techniques
and software can be used as a promising starting point to
develop these flight systems.

ACKNOWLEDGMENTS

This research is partially supported by Air Force Office
of Scientific Research Grant No. FA9550-11-1-0332 and a
Yamada Corporation Fellowship.

REFERENCES

[1] Bureau d’Enquêtes et d’Analyses pour la Sécurité de
l’Aviation Civile, “Final Report: On the accident on 1st June
2009 to the Airbus A330-203 registered F-GZCP operated
by Air France flight AF 447 Rio de Janeiro - Paris,”
http://www.bea.aero/en/enquetes/flight.af.447/rapport.final.en.php,
2012.

[2] S. Imai and C. A. Varela, “A programming model for spatio-temporal
data streaming applications,” in Dynamic Data-Driven Application Sys-
tems (DDDAS 2012), Omaha, Nebraska, June 2012, pp. 1139–1148.

[3] ——, “Programming spatio-temporal data streaming applications with
high-level specifications,” in 3rd ACM SIGSPATIAL International
Workshop on Querying and Mining Uncertain Spatio-Temporal Data
(QUeST) 2012, Redondo Beach, California, USA, November 2012.

[4] R. S. Klockowski, S. Imai, C. Rice, and C. A. Varela, “Autonomous
data error detection and recovery in streaming applications,” in Dynamic
Data-Driven Application Systems (DDDAS 2013) Workshop, May 2013,
pp. 2036–2045.

[5] Worldwide Computing Laboratory, Rensselaer Polytechnic Institute,
“The PILOTS programming language,” http://wcl.cs.rpi.edu/pilots/.

[6] FlightAware, “Flight track log for N756VH on 03-Apr-2012
(KALB-KFME),” http://flightaware.com/live/flight/N756VH/history/
20120403/1800Z/KALB/KFME/tracklog.

[7] NOAA’s National Weather Service, “Forecast winds and temps aloft,”
http://aviationweather.gov/products/nws/winds/.

[8] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, K. Ito, R. Motwani,
U. Srivastava, and J. Widom, “Stream: The Stanford data stream
management system,” in ACM SIGMOD Conference. Springer, 2004.

[9] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model
and architecture for data stream management,” The VLDB JournalThe
International Journal on Very Large Data Bases, vol. 12, no. 2, pp.
120–139, 2003.

[10] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss,
and M. A. Shah, “TelegraphCQ: continuous dataflow processing,” in
Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. ACM, 2003, pp. 668–668.

[11] M. H. Ali, B. Chandramouli, B. S. Raman, and E. Katibah, “Spatio-
temporal stream processing in Microsoft StreamInsight,” IEEE Data
Eng. Bull., pp. 69–74, 2010.

[12] K. An and J. Kim, “Moving objects management system supporting
location data stream,” in Proceedings of the 4th WSEAS International
Conference on Computational Intelligence, Man-Machine Systems and
Cybernetics, ser. CIMMACS’05. Stevens Point, Wisconsin, USA:
World Scientific and Engineering Academy and Society (WSEAS),
2005, pp. 99–104.

[13] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Data Mining Workshops (ICDMW), 2010
IEEE International Conference on. IEEE, 2010, pp. 170–177.

[14] V. Gulisano, R. Jimnez-Peris, M. Patio-Martnez, C. Soriente, and P. Val-
duriez, “StreamCloud: An elastic and scalable data streaming system,”
IEEE Trans. Parallel Distrib. Syst., pp. 2351–2365, 2012.

[15] U.S. Department of Transportation Federal Aviation Administra-
tion, “Code of federal regulations part 91.225: Automatic de-
pendent surveillance-broadcast (ADS-B) out performance require-
ments to support air traffic control (ATC) service; final rule,”
http://www.faa.gov/regulations policies/faa regulations/, July 2013.

Procedia Computer Science 00 (2013) 1–10

Procedia Computer
Science

International Conference on Computational Science, ICCS 2013

Autonomous Data Error Detection and Recovery
in Streaming Applications

Richard Klockowski, Shigeru Imai, Colin L Rice, Carlos A. Varela*
Computer Science Department, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, USA

Abstract

Detecting and recovering from errors in data streams is paramount to developing successful autonomous real-time
streaming applications. In this paper, we devise a multi-modal data error detection and recovery architecture to enable
automated recovery from data errors in streaming applications based on available redundancy. We formally define
error signatures as a way to identify classes of abnormal conditions and mode likelihood vectors as a quantitative
discriminator of data stream condition modes. Finally, we design an extension to our own declarative programming
language, PILOTS, to include error correction code. We define performance metrics for our approach, and evaluate
the impact of monitored data window size and mode likelihood change threshold on the accuracy and responsiveness
of our data-driven multi-modal error detection and correction software. Tragic accidents—such as Air France’s flight
from Rio de Janeiro to Paris in June 2009 killing all people on board— can be prevented by implementing auto-pilot
systems with an airspeed data stream error detection and correction algorithm following the fundamental principles
illustrated in this work.

Keywords: redundant data error correction, spatio-temporal data streams, programming languages

1. Introduction

We present a software framework for developing resilient data driven applications and systems that act upon re-
dundant spatio-temporal data streams. In this work we assume a spatio-temporal data streaming application model,
where input streams associated to space and time get converted into output streams and error streams according to a
mathematical description of the behavior of the application. Much like redundant bits in error correcting hardware,
stream redundancies allow for dynamic detection and correction of known types of failures. Redundancy is a key
aspect present in many spatio-temporal data streaming applications. However, unless it is e↵ectively used by systems,
autonomous recovery from error conditions is not possible. There are many complex ways in which a set of redundant
input streams may fail. We propose a system towards automatically correcting known failures that can be detected in
the source streams. We formalize error signatures, mathematical function patterns that enable autonomous systems to
accurately detect when an erroneous condition exists in an input data stream. A multi-modal architecture uses these
error signatures to switch each stream between di↵erent modes of operation. Mode likelihood vectors are computed

Corresponding author
Email address: cvarela@cs.rpi.edu (Carlos A. Varela*)

R. Klockowski et al. / Procedia Computer Science 00 (2013) 1–10 2

in real-time by interpolating streamed data to a set of known error signatures. These vectors are used to determine
the condition that input streams are exhibiting. When in a known error condition mode, the erroneous original data
stream is automatically replaced by a data stream that is computed from the redundant (correct) data streams. The
system dynamically adapts to errors in the data streams by switching modes, and it can resume normal behavior when
input data is no longer categorized as being erroneous. We design an extension to PILOTS, a declarative program-
ming language to not only compute error signatures from high-level specifications of spatio-temporal data streaming
applications, but also to enable these applications to recover from known errors by using available redundancy in the
data.

The Air France AF447 accident in June 2009 left 12 crew members and 216 passengers dead [1]. The reason
for the crash was faulty sensor data that caused the automatic pilot to disengage, ultimately confusing the human
pilots who were unable to take timely corrective actions. The pitot tubes of the airplane began to freeze which caused
incorrect air speed readings, switching the plane from normal law to alternate law, and eventually causing the pilots to
enter an unintended fatal stall. After a technical investigation by the Bureau d’Enquêtes et d’Analyses pour la Sécurité
de l’Aviation Civile (BEA) it is clear that this error condition is detectable and can be corrected by an active redundant
data-driven flight system. We argue that disasters like this are preventable by using an automatic pilot that implements
the framework described in this paper: a multi-modal dynamic data-driven error correction software framework using
error signatures and mode likelihood vectors.

2. Data Error Detection and Correction Architecture

Our contribution is an autonomous error correcting architecture for data streaming applications (depicted in Fig-
ure 1). The architecture was designed for applications with redundant input streams. For a set of input streams
D d1, d2, ..., dn

, the redundancy of the streams can be defined as the set of functions R r1, r2, ..., rm

where
each r

i

is a function r

i

d̂1, . . . , d̂k

d

j

for j 1...n , k n, d̂1, . . . , d̂k

D and d

j

d̂1, . . . , d̂k

. An error function

associated to a particular input stream d

j

may take the form e

j

d

j

r

i

d̂1, . . . , d̂k

, where r

i

is the redundancy func-
tion r

i

d̂1, . . . , d̂k

d

j

. We define error signatures as the shape of these error functions for previously known error
conditions. Additionally we formalize the mode likelihood vector, which is used to determine whether there is an error
and whether or not it can be corrected. Data stream error correction is provided in the case that a redundancy within
the other working streams is available. Especially in the case of spatio-temporal streams that use inherently redundant
physical data such as those found in a flight system using sensor data, error signatures enable developing e↵ective
real-time error warning and correction systems. We contend that our proposed software framework can be useful to
prevent tragedies such as the Air France plane crash. For this purpose we are developing PILOTS: a programming
language for spatio-temporal data streaming applications [2]. PILOTS allows us to view heterogeneous data streams
as homogeneous by declaratively selecting data according to geometric principles. In this paper, we describe an exten-
sion to the language design to include error correction code using the notion of error signatures. This software should
prove very helpful for streaming application developers to enable them to create e↵ective error correcting software.

2.1. Error Signatures

The purpose of an error signature is to be able to reason about which data stream may contain an error. A collection
of error signatures, called an error signature set, is matched against the observed error which provides a means of
error detection. We assume the existence of an error function which is simply a function of the input streams that
captures the redundancy in the data streams. The measured error for an application is the value of the error function
over a window of time. Each error signature corresponds to a particular type of failure in the input streams. The
e↵ectiveness of error signatures is highly dependent on the choice of error function. When there are no problems with
the input streams, error functions typically evaluate to zero.

An error signature describes the behavior of the error function under particular operating conditions which we
choose to call modes. An important distinction is made between theoretical error signatures, which correspond to
known error modes, and measured error which is generated by looking at the raw input data. Theoretical error signa-
tures are currently defined as a function of time which may contain constants k0, . . . , kn

satisfying a set of constraints.
In order to identify useful error signatures for a particular application, we currently employ an empirical method of
simply running a simulation using data that exhibits a certain type of error and observe the results in the measured

R. Klockowski et al. / Procedia Computer Science 00 (2013) 1–10 3

!
!"
"#$%&$%'$%()

!
#"
"#$%&$%'$%()

!
$"
"#$%&$%'$%()

!
!
!

!"#$"#%

!""#$%&'$()

*(+,#

!"#$%&"'(

)*+*(,+-.*%/

01+'$&"'(

)*+*(,+-.*%/

*
#

*
!

!
!
!

*
%

+
#

+
!

!
!
!

+
&

&''('%

-&'&

.,#,%'$()

!"#$%&#"'()*+#",$$,+#+$+#$+$-(".%/%",$'+#"

!
!
,

!
#
,

!
$
,

)*$"#%

/00(01

-,',%'$()

!"#$"%&''#'%()*"+,-'./
!!!

!
!
!

01''"&#

2%3"

01''"&#

4).+#%)&
-%.%/0

'
$%0

!
$%!$%0

$
1

0#1.%2

0)3(1#"$*%5"*%6)),$7".#)'

2%.%34
'
$%4

!
$%555$%4

$
6

34+*%.''#'

1&5&)8&$)'

/00(01

2,%(3,04

'".)7"'+9*"$)'

0)''".#

,+#+$%/$

'".)7"'+9*"

3),"

7*8(9:;<(:*8%*=%

(>:0%?@?+9

1&'".)7"'+9*"

&)$"'')'

Figure 1: Data streaming architecture with error detection and correction

error. The error signature under normal conditions signifies that no errors have been detected. When all input streams
are working properly the system assumes normal mode. Otherwise one of three modes is assumed: unknown, re-

coverable, or unrecoverable. If the system reaches recoverable mode, an error signature has been matched with the
observed error and the appropriate redundancy is available to replace the stream producing the error. Thus for each
error signature there exists a corresponding mode. If no redundancy is available the system switches to unrecoverable

mode where a flag is raised (e.g., a red light bulb) denoting the type of error that was detected. In unknown error mode
a similar type of flag is raised, but there is no known error signature that corresponds to the observed error. Only
specific types of errors, those which have distinct error signatures and place the system into a recoverable mode, can
be detected and corrected.

2.2. Error Detection

The measured error is compared to each of the theoretical error signatures in an attempt to find a strong match.
Our current method for comparing error signatures is accomplished by formulating what we call the mode likelihood

vector. Let s0, . . . , sn

be the collection of known theoretical error signatures, where s0 corresponds to the normal
mode signature with no errors. We calculate the distance vector � t �0 t , . . . , �

n

t where �
i

t is the distance
between the measured error e t and s

i

t . Specifically, �
i

t

t

t ! e t s

i

t dt where e t is the measured error
and ! is the window size. The smaller the distance, the closer the raw data is to the theoretical signature. We formally
define the mode likelihood vector to be L t l0 t , l1 t , . . . , l

n

t where each l

i

t is defined as:

l

i

t

1, if �
i

t 0
min �0 t ,...,�

n

t

�
i

t

, otherwise.

Observe that for each l

i

L it follows that 0 l

i

1, where l

i

represents the ratio of the likelihood of signature s

i

being matched with respect to the likelihood of the best signature. At each time stamp, the maximum two elements l

j

and l

k

of the mode likelihood vector, where l

j

l

k

, are inspected in order to determine the error mode. Because of the
way L t is created, the maximum entry l

j

will always be equal to 1. Given a threshold ⌧ 0, 1 we check for one
likely candidate that is su�ciently more likely than its successor by ensuring that l

k

⌧. Consequently, a known error
mode is assumed. The correct mode is determined by choosing the error signature, and error mode, corresponding to
l

j

which is s

j

. Each recoverable error mode uniquely determines the input streams that are erroneous. If j 0 then

R. Klockowski et al. / Procedia Computer Science 00 (2013) 1–10 4

the system is in normal mode. If l

k

⌧ then, regardless of the value of j, unknown error mode is assumed and an
error flag is raised. No corrective action can be taken because the measured error cannot be recognized, and the input
data flows through the application uncorrected. A well-behaved set of error signatures will produce nearly orthogonal

mode likelihood vectors, where one element is a one and the rest are close to zero. In sections 3 and 4 we study the
impact of the choice of theoretical error signature sets on detection and correction results.

2.3. Error Recovery

If we assume that the system is in one of the known error modes (i.e., a match has been found for the measured
error) then an attempt can be made at correcting the error. Recall that the error function is given and contains infor-
mation about the redundancy between data streams. If an input stream d

j

experiences an error and a redundancy r

i

exists which can replace that stream, then the error is recoverable. After the error has been corrected, the original
input streams will continue to be monitored to determine if the error has subsided and the system is able to reenter
normal mode.

3. Twice: A Case Study

We explore how error signatures a↵ect the values of mode likelihood vectors defined in Section 2 by using a very
simple data streaming application called Twice.

3.1. A Simple Data Streaming Application

Twice is a simple data streaming application which takes two input data streams, a and b, where b is supposed to
be twice as large as a, and outputs an error defined by b 2 a. Stream data for a and b are expected to increase by one
for a and by two for b every second (i.e., a t t and b t 2 t), so the error is zero in the normal case; however,
several modes of errors could happen depending on di↵erent types of failures as shown in Figure 2. Figure 2(a) shows
normal mode, where most of the time the error remains zero, but there are several spikes due to transient fluctuation
of the data input timing. Figure 2(b) suggests critical failure of a’s data source. We will call this a failure mode. At
around 50 seconds of the simulation time, the error starts growing linearly. This linear increase of the error explains
that a remains a constant value whereas b continues increasing its value. Similarly, Figure 2(c) shows a situation
where a correctly increases, but b fails to increase its value. Similarly, we will call this b failure mode. Figure 2(d)
shows an example of an out-of-sync mode, where the error becomes consistently large at around 30 seconds of the
simulation time. This is because a’s input data stream becomes consistently one second behind b’s input data stream.

!"

!#

!$

%

$

#

"

% #% &% '% (% $%% $#%

!"#$%&!"#'

!"#$%&$'((&(

!%)*

%

%)*

$

$)*

#

#)*

% #% &% '% (% $%% $#%

$%&"'(!"#)

!*%

%

*%

$%%

$*%

% #% &% '% (% $%% $#%

$%&"'(!"#)

!$*%

!$%%

!*%

%

*%

% #% &% '% (% $%% $#%

$%&"'(!"#)

!)#$*$+",-.(' !/#0+",-.(' !1#$2.34&+4567/ '((&(

Figure 2: Known error patterns for twice example

3.2. Error Signatures for Twice

To correctly di↵erentiate the four di↵erent modes of errors presented in Figure 2, we define error signatures for
each mode. In the course of our case study, we evaluated three sets of error signatures as shown in Table 1. For the
no error, a failure, and b failure modes, all error signatures are the same in these error signature sets. That is, e 0
for no error, e 2t k for a failure, and e 2t k for b failure. Each error signature is designed to capture a
characteristic pattern of error we see in the previous section. For example, an error signature for a failure is a linear
function with a slope of 2 and a constant k, which resembles the increasing line starting at around 50 seconds of
a failure shown in Figure 2(b). Di↵erences among error signature sets are limited to the out-of-sync failure mode.
Both base and out-of-sync restricted error signature sets have e k for the out-of-sync mode, but the out-of-sync

restricted imposes a constraint on the value of k (k ⌧
oos

). The ⌧
oos

threshold is intended to prevent noise and small
out-of-sync conditions from being categorized as abnormal.

R. Klockowski et al. / Procedia Computer Science 00 (2013) 1–10 5

Table 1: Error signature sets defined for twice example
Mode

Error signature set No error A failure B failure Out-of-sync
Base e k, where k 0

Out-of-sync restricted e 0 e 2t k e 2t k e k, where k ⌧
oos

Out-of-sync removed none

3.3. Mode Estimation Study

Using the error signatures defined in Table 1, we estimate the operating modes for a 480 seconds sequence of
measured error including mode change within sixty-second intervals as shown in Figure 3(a). Figure 4(a) shows the
ground truth: the transition of modes that is used to generate the streams. In Figure 4, modes are mapped to 0 for
unknown, 1 for no error, 2 for a failure, 3 for b failure, and 4 for out-of-sync. For each set of error signatures presented
in the previous section, we first compute the likelihood of each mode, and then estimate mode likelihoods relative to
the maximum likelihood which represents the minimum signature interpolation distance.

!"#$

!"$$

!#$

$

#$

"$$

"#$

! "! #$! #%! $&! '!! '"! &$! &%!

!
"
#
$
%
&
"
'
(
)
&
&
*
&
(

!"#$%&'$()

!"#$%&"'()&*$&))+),$&$-$.$/ 0"

!.#$%+*&$123&124++* 5+)$."'&$&))+)$'267"8()&'$'&8,9284:$-$;<

!=#$%+*&$123&124++* 5+)$+(8/+5/'>7=$)&'8)2=8&*$&))+)$'267"8()&$'&8,$9284$:-;<

!*#$%+*&$123&124++* 5+)$+(8/+5/'>7=$)&?+@&*$&))+)$'267"8()&$'&8,$9284$:-;<

!

!("

! "! #$! #%! $&! '!! '"! &$! &%!

!
"
#
$
%
&
'
(
$
)
'
*
"
"
#

!"#$%&'$()

*+%$,,+,

-%.-"/0,$

1%.-"/0,$

+023+.3

'4*(

5%6%789

#(!

!

!("

! "! #$! #%! $&! '!! '"! &$! &%!

!
"
#
$
%
&
'
(
$
)
'
*
"
"
#

!"#$%&'$()

*+%$,,+,

-%.-"/0,$

1%.-"/0,$

+023+.3

'4*(

5%6%789

#(!

!

!("

! "! #$! #%! $&! '!! '"! &$! &%!

!
"
#
$
%
&
'
(
$
)
'
*
"
"
#

!"#$%&'$()

*+%$,,+,

-%.-"/0,$

1%.-"/0,$

5%6%789

#(!

Figure 3: Measured error and mode likelihood results for twice example

The results of the mode likelihood and the estimated modes are shown in Figure 3(b)-(d) and 4(b)-(d) respectively.
Figure 3(b) and 4(b) are results for the base error signatures, Figure 3(c) and 4(c) are results for the out-of-sync

restricted error signatures, and Figure 3(d) and 4(d) are results for the out-of-sync removed error signatures.

• Base: Looking at the result of estimated mode in Figure 4(b), most of the first and last 60 seconds are recognized
as the out-of-sync mode, where they are actually supposed to be in the normal mode. This incorrect estimation

R. Klockowski et al. / Procedia Computer Science 00 (2013) 1–10 6

occurs because the given error in Figure 3(a) contains noise so that the actual value of the error is not always
exactly zero. Thus, the out-of-sync error signature fits better to the measured error than no error since the
constant k in the out-of-sync error signature can be any value other than zero. This essentially illustrates an
ill-defined error signature set: since normal and out-of-sync conditions are di�cult to distinguish from each
other, computed mode likelihood vectors are far from orthogonal.
• Out-of-sync restricted: The result of estimated mode in Figure 4(c) looks closer to the true mode in Figure 4(a)

than the result of the base error signature set. The threshold ⌧
oos

(⌧
oos

20 for this experiment) is a constraint
on the out-of-sync error signature that prevents it from matching the first and last 60 seconds, and correctly lets
the normal signature match those periods instead.
• Out-of-sync removed: The result of estimated mode in Figure 4(d) does not match the out-of-sync mode at

around 120-180 and 300-360 seconds since that mode does not exist, but it successfully goes into unknown

error mode which are valid estimations when using this signatures set. Also, it succeeds to match normal mode
at around 0-60 and 420-480 seconds most of the time.

!

"

#

$

%

! &! "#! "'! #%! $!! $&! %#! %'!

!
"
#
$
%
&
'
(
)
*
+

!"#$%&'$()

*+%,-./,0/'12(

3+%4 05"6-7$

8+%5 05"6-7$

9+%2, $77,7

:+%-2;2,<2

!"#$%&'()* +&(+,$-'&$./)/&"+/*$0+&/"1$*"+"

!2#$30+41"+/* 1'*/$-'&$2"0/$/&&'&$04.)"+(&/0$0/+5$64+,$7$8$9:;

!

"

#

$

%

! &! "#! "'! #%! $!! $&! %#! %'!

,
-
#
.
/
%
#
+
*
'
(
)
*
+

!"#$%&'$()

*+%,-./,0/'12(

3+%4 05"6-7$

8+%5 05"6-7$

9+%2, $77,7

:+%-2;2,<2

!

"

#

$

! &! "#! "'! #%! $!! $&! %#! %'!

,
-
#
.
/
%
#
+
*
'
(
)
*
+

!"#$%&'$()

3+%4 05"6-7$

8+%5 05"6-7$

9+%2, $77,7

:+%-2;2,<2

!<#$30+41"+/* 1'*/$-'&$'(+='-=0>)<$&/0+&4<+/*$/&&'&$04.)"+(&/0$0/+5$64+,$7$8$9:;

!*#$30+41"+/* 1'*/$-'&$'(+='-=0>)<$&/1'?/*$/&&'&$04.)"+(&/0$0/+5$64+,$7$8$9:;

!

"

#

$

%

! &! "#! "'! #%! $!! $&! %#! %'!

,
-
#
.
/
%
#
+
*
'
(
)
*
+

!"#$%&'$()

*+%,-./,0/'12(

3+%4 05"6-7$

8+%5 05"6-7$

9+%2, $77,7

:+%-2;2,<2

Figure 4: Estimated modes for twice example

4. Performance Metrics and Experimental Results

We evaluate the performance of the proposed error detection algorithm which depends on the window size, !,
representing how much historical data we consider, and the minimum likelihood threshold ⌧, representing how well
data must match a single signature in order to select a corresponding operation mode.

R. Klockowski et al. / Procedia Computer Science 00 (2013) 1–10 7

4.1. Performance Metrics

• Accuracy: This metric is used to evaluate how accurately the algorithm determines the true mode. Assuming
the true mode transition m t is known for t 0, 1, 2, ...,T , let m t for t 0, 1, 2, ...,T be the mode determined
by the error detection algorithm. We define accuracy m,m 1

T

T

t 0 p t , where p t 1 if m t m t

and p t 0 otherwise.
• Average Response Time: This metric is used to evaluate how quickly the algorithm reacts to mode changes.

Let a tuple t

i

,m
i

represent a mode change point, where the mode changes to m

i

at time t

i

. Let M

t1,m1 , t2,m2 , ..., t

N1 ,mN1 and M t1,m1 , t2,m2 , ..., t

N2
,m

N2
be the sets of true mode changes

and detected mode changes respectively. We compute the average response time as shown in Algorithm 1.

input : True mode changes M t1,m1 , t2,m2 , ..., t

N1 ,mN1 , t

N1 1 simulation end time,
Detected mode changes M t1,m1 , t2,m2 , ..., t

N2
,m

N2
output: Average response time AvgResp

Responses 0;
for i 1 to N1 do

Find the smallest t

j

such that t

i

t

j

m

i

m

j

; if not found, t

j

t

i 1;
Responses Responses t

j

t

i

;
end
return AvgResp Responses N1;

Algorithm 1: Average response time computation

4.2. Experimental Results

Based on the metrics defined in the previous section, we evaluate the monitored error for the twice example in
Figure 3(a) with five di↵erent random seeds for noise generation. We use each of the error signature sets for evaluation:
base, out-of-sync restricted, and out-of-sync removed. For the base and out-of-sync restricted error signature sets, a
set of true mode changes is given by M 1, 1 , 61, 3 , 121, 4 , 181, 2 , 301, 4 , 361, 3 , 421, 1 . However, for
the out-of-sync removed error signature, we replace the out-of-sync errors with unknown errors (respectively 4 and 0
on the y-axis of Figure 4) in M. We do this for fairness because the out-of-sync removed error signatures cannot detect
an out-of-sync error at all. To find out the e↵ect on the accuracy and average response time by the window size ! and
threshold value ⌧, we measure these metrics for window size ! 5, 10, 15, 20 and threshold ⌧ 0.2, 0.4, 0.6, 0.8 .

Accuracy and average response time results for the base, out-of-sync restricted, and out-of-sync removed error
signature sets are shown in Figure 5. For all the three error signature sets, there is a trend that the accuracy and
average response time improve as the threshold ⌧ increases. This result can be explained by the following: there are
some cases in which there are two competing modes whose likelihood values are close to each other, and due to the
closeness, the mode detection algorithm tends to regard it as an unknown error mode. Higher threshold values are
more permissive, thus give better results in this example. However if the choice of ⌧ is too large then this system may
choose to enter a known error mode when the correct choice is actually unknown error mode.

There is a positive correlation between the window size and average response time for all the threshold values.
This is an intuitive result: the less the algorithm uses past data, the more responsive it becomes to mode changes.
Also, a faster average response time leads to a better accuracy result since the error detection algorithm cannot predict
mode changes, but only react to them. That is, a smaller window size implies better accuracy. In fact, the base and
out-of-sync restricted error signature sets take the best accuracy/average response time when the window size is the
smallest ! 5 and threshold ⌧ 0.8. On the other hand, in the case of the out-of-sync removed error signature set,
the accuracy and average response time are peaked when window size ! 10. Thus, the most appropriate window
size is di↵erent depending on each error signature set.

The out-of-sync removed error signature set works best. By analyzing three di↵erent sets of error signatures
for this simple example, we see the importance of the error signature set to get accurate mode estimation results
quickly. Especially, as we can see in the results from the base error signatures set, error signatures should not be very
close in terms of error patterns they match, otherwise those error signatures are vulnerable to noise. Well-behaved

R. Klockowski et al. / Procedia Computer Science 00 (2013) 1–10 8

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! ' #! #' $! $'

!
"
"
#
$
%
"
&

!"#$%&'(")*'+

!"#"$%&

!"#"$%'

!"#"$%(

!"#"$%)

!

'

#!

#'

$!

$'

! ' #! #' $! $'

!
"
#
$
%
&
#
'(
#
)
*
+
,
)
#
'-
.
/
#
'

0
)
#
1
2

!"#$%&'(")*'+

!"#"$%&

!"#"$%'

!"#"$%(

!"#"$%)

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! ' #! #' $! $'

!
"
"
#
$
%
"
&

!"#$%&'(")*'+

!"#"$%&

!"#"$%'

!"#"$%(

!"#"$%)

$

*

+$

+*

&$

&*

! ' #! #' $! $'

!
"
#
$
%
&
#
'(
#
)
*
+
,
)
#
'-
.
/
#
'

0
)
#
1
2

!"#$%&'(")*'+

!"#"$%&

!"#"$%'

!"#"$%(

!"#"$%)

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

! ' #! #' $! $'

!
"
"
#
$
%
"
&

!"#$%&'(")*'+

!"#"$%&

!"#"$%'

!"#"$%(

!"#"$%)

$

*

+$

+*

&$

&*

! ' #! #' $! $'

!
"
#
$
%
&
#
'(
#
)
*
+
,
)
#
'-
.
/
#
'

0
)
#
1
2

!"#$%&'(")*'+

!"#"$%&

!"#"$%'

!"#"$%(

!"#"$%)

!"#$%&'(()*"(+&# ,"-. !/#$%&'(()*"(+&# 0)1#23#-+4(*.-1*5(1.6 !(#$%&'(()*"(+&# 0)1#23#-+4(*.728.6

!"#9%&'8.*":.&;.-<24-. =57.&#

,"-.

!"#$%"&'(!"#$%"&'(!"#$%"&'(

!"#$%"&'(!"#$%"&'(!"#$%"&'(

!/#9%&'8.*":. ;.-<24-.&=57.&#

0)1#23#-+4(*.-1*5(1.6

!(#9%&'8.*":. ;.-<24-.&=57.&#

0)1#23#-+4(*.728.6

Figure 5: Results of accuracy and average response time for base, out-of-sync restricted, and out-of-sync removed error signature sets

error signatures are those that, under normal and known error conditions, produce near orthogonal mode likelihood
vectors.

5. Implementation with A Spatio-Temporal Data Streaming Programming Language

PILOTS (ProgrammIng Language for spatiO-Temporal data Streaming applications) is a programming language
specifically designed for analyzing data streams incorporating space and time, as in applications running on moving
objects [3, 2]. Using PILOTS, application developers can easily program an application that handles spatio-temporal
data streams by writing a high-level declarative program specification. The system architecture for applications im-
plemented in the PILOTS programming language is shown in Figure 1: everything outside of the dotted box. In this
architecture, the application gets data d1, d2, . . . , dn

from the data selection module. This takes incoming heteroge-
neous spatio-temporal data streams (d1, d2, . . . , dn

) and outputs homogeneous data streams depending on the current
location and time, and the application generates output (o1, o2, . . . , om

) and data errors (e1, e2, . . . , el

) based on an ap-

plication model. Whereas spatio-temporal data is available with various spatial density and time frequency depending
on data sources, applications often need to process data at a constant frequency. To view such heterogeneous data
streams as homogeneous data streams, the data selection module specifically provides first-class support for data se-
lection and interpolation so that applications can get data consistently regardless of the data’s original spatio-temporal
heterogeneity.

We extend the PILOTS programming language to incorporate an error correction method. Two new keywords,
signatures and correct, are introduced in addition to the existing PILOTS grammar defined in [3] to specify
which data streams have an associated redundancy and how to correct the incoming data. The statements under
the signature keyword describe the application’s error signature set. Each statement has a label containing any
constant parameters, a functional description of the error signature, and an optional list of constraints on the constant
parameters separated by commas. The statements under the correct keyword declare the relationship between a
particular error signature, the corresponding erroneous stream, and the redundancy available to fix the error. This
information is enough to know how to handle recoverable error modes. If a data error is detected when matching a
known error signature, we can correct an erroneous input as specified under correct. If a signature is not included in
the correct clause, then it is a known but unrecoverable error. Here we explain how error corrections can be written
in the program specification by using the Twice example, as shown in Figure 6. The error correction support for
PILOTS is realized by the error detection module, depicted in Figure 1, which takes all the error outputs e1, e2, ..., el

and tries to detect erroneous data inputs by comparing the error outputs with the known error signatures. If an error

R. Klockowski et al. / Procedia Computer Science 00 (2013) 1–10 9

on data input d

i

is detected, it will be replaced by the value specified in the correct clause by the error recovery

module. '

&

$

%

program twice;

inputs

a: (t) using closest(t);

b: (t) using closest(t);

outputs;

errors

e: (b - 2 * a) at every 1 sec;

signatures

s0: e = 0;

s1(k): e = 2*t + k;

s2(k): e = -2*t + k;

s3(k): e = k, abs(k) > 20;

correct

s1(k): a = b / 2;

s2(k): b = 2 * a;

end;

Figure 6: A simple program specification with error correction

6. Related Work

First and foremost this work builds upon the programming language PILOTS [2, 3] which targets spatio-temporal
data streaming applications such as those found in flight systems. The detailed investigation reported in [1] suggests
that our notion of error signatures to detect data errors can be quite useful. The concept of the moving object data base
(MODB) which supports spatio-temporal data streaming is discussed in [4]. This research is relevant because many
applications of error signatures will include data corresponding to a moving object (such as a plane).

Stream processing has become very attractive in the last decade. Surveys on general data streaming applications
and methods include [5, 6]. The concept of the rule engine is discussed in [5] which has many similarities to our
error signatures system but does not correct the input streams. General-purpose data stream management systems
[7, 8, 9] cannot a↵ord the declarative specification of data streams and data error correction that our domain-specific
approach provides. In [10] a component is added to stream processing systems to orchestrate the behavior of the
applications, including correcting domain specific errors. However this is an event driven system, the input data is
not being directly monitored. To incorporate error correction using the notion of error signatures into a distributed
environment, the work presented in [11] for setting up a set of distributed stream processing systems may be useful.
A distributed data processing framework can help with the performance and scalability of data analyses.

7. Conclusion

In this paper we devised a multi-modal data error detection and recovery architecture based on our definition of
error signatures as mathematical function patterns. We defined mode likelihood vectors as a quantifiable measure
of the likelihood of the application being in a normal or a particular error mode, as defined by an error signature.
Well-behaved error signatures are those that produce orthogonal mode likelihood vectors on normal and known error
conditions. Ill-defined error signatures (those producing non-orthogonal vectors) lead to more undesirable or incorrect
unknown error mode conditions, rendering our error detection and correction framework less useful. Real-time anal-
ysis of error streams and pattern matching against known error signatures enables streaming applications to switch
from normal operation mode into known error modes. If the known error is recoverable, thanks to the redundancy
available in the data, we autonomously correct the faulty data stream, so that applications continue to behave nor-
mally. Furthermore, we continue monitoring the input streams, so that normal operation can be reinstated when data
are considered no longer erroneous.

Accuracy and responsiveness depend on the window size, !, of the monitored data, and on the threshold, ⌧, im-
posed on the relative likelihood of a mode before accepting a change in the application’s mode of operation. Using a

R. Klockowski et al. / Procedia Computer Science 00 (2013) 1–10 10

simple streaming application we found that, the larger ! is, the less responsive (higher response time) the algorithm.
However if ! is too small, the system enters unknown mode more frequently a↵ecting both accuracy and responsive-
ness. When the signature set is well-behaved, ⌧ has less e↵ect on accuracy, since mode likelihood vectors will be near
orthogonal. However, for less well-behaved signature sets, smaller values of ⌧ will cause the system to enter unknown

error mode more often, while larger values of ⌧ will produce more false positives. Since, the requirements on accu-
racy and responsiveness are ultimately application-dependent, application developers need to find the right balance
of these parameters to tune their applications’ error detection and correction behavior. The implementation of the
extended PILOTS programming language, due to its declarative nature, will help quickly prototype new applications
and develop better error detection and correction methodologies.

Future work includes creating well-behaved error signatures for aeronautical applications in order to correct redun-
dant data such as air speed or fuel levels. We intend to extend this work to incorporate quantitative logical inference
based on spatio-temporal knowledge and constraints to promote autonomous data stream management. A method for
enforcing logical constraints within streaming applications is presented in [12]. A comprehensive look at the varia-
tions of spatio-temporal logic and their computational complexity is presented in [13]: the dichotomy of qualitative
and quantitative logic is discussed with respect to space and time. Further research on spatio-temporal logic and
constraint logic programming includes [14, 15].

Acknowledgments
This research is partially supported by the Air Force O�ce of Scientific Research Grant No. FA9550-11-1-0332.

References

[1] B. d’Enquêtes et d’Analyses pour la Sécurité de l’Aviation Civile, Final Report: On the accident on 1st June 2009 to the Airbus A330-203
registered F-GZCP operated by Air France flight AF 447 Rio de Janeiro - Paris.
URL http://e1.flightcdn.com/live/special/Air_France_447_AFR447_Final_Report-en.pdf

[2] S. Imai, C. A. Varela, Programming spatio-temporal data streaming applications with high-level specifications, in: 3rd ACM SIGSPATIAL
International Workshop on Querying and Mining Uncertain Spatio-Temporal Data (QUeST) 2012, Redondo Beach, California, USA, 2012.

[3] S. Imai, C. A. Varela, A programming model for spatio-temporal data streaming applications, in: Dynamic Data-Driven Application Systems
(DDDAS 2012), Omaha, Nebraska, 2012, pp. 1139–1148.

[4] K. An, J. Kim, Moving objects management system supporting location data stream, in: Proceedings of the 4th WSEAS international confer-
ence on Computational intelligence, man-machine systems and cybernetics, CIMMACS’05, World Scientific and Engineering Academy and
Society (WSEAS), Stevens Point, Wisconsin, USA, 2005, pp. 99–104.

[5] M. Stonebraker, U. Çetintemel, S. Zdonik, The 8 requirements of real-time stream processing, SIGMOD Rec. 34 (4) (2005) 42–47.
[6] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream systems, in: Proceedings of the twenty-first ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems, PODS ’02, ACM, New York, NY, USA, 2002, pp. 1–16.
[7] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang, W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,

S. Zdonik, The design of the borealis stream processing engine, in: In CIDR, 2005, pp. 277–289.
[8] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, K. Ito, R. Motwani, U. Srivastava, J. Widom, Stream: The stanford data stream management

system, Springer, 2004.
[9] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, M. Doo, Spade: the system s declarative stream processing engine, in: Proceedings of the 2008

ACM SIGMOD international conference on Management of data, SIGMOD ’08, ACM, New York, NY, USA, 2008, pp. 1123–1134.
[10] G. Jacques-Silva, B. Gedik, R. Wagle, K.-L. Wu, V. Kumar, Building user-defined runtime adaptation routines for stream processing applica-

tions, Proc. VLDB Endow. 5 (12) (2012) 1826–1837.
[11] M. Branson, F. Douglis, B. Fawcett, Z. Liu, A. Riabov, F. Ye, Clasp: collaborating, autonomous stream processing systems, in: Proceedings

of the ACM/IFIP/USENIX 2007 International Conference on Middleware, Middleware ’07, Springer-Verlag New York, Inc., New York, NY,
USA, 2007, pp. 348–367.

[12] A. Lallouet, Y.-C. Law, J. H.-M. Lee, C. F. K. Siu, Constraint programming on infinite data streams., in: T. Walsh (Ed.), IJCAI, IJCAI/AAAI,
2011, pp. 597–604.

[13] F. Wolter, M. Zakharyaschev, Qualitative spatio-temporal representation and reasoning: A computational perspective, in: Exploring Artifitial
Intelligence in the New Millenium, Morgan Kaufmann, 2001, pp. 175–216.

[14] R. Gennari, Temporal reasoning and constraint programming - a survey, CWI Quarterly 11 (1998) 3–163.
[15] A. Ra↵aeta, T. W. Fralhwirth, Spatio-temporal annotated constraint logic programming., in: PADL’01, 2001, pp. 259–273.

Programming Spatio-Temporal Data Streaming
Applications with High-Level Specifications

Shigeru Imai
Department of Computer Science
Rensselaer Polytechnic Institute

110 Eighth Street
Troy, NY 12180, USA
imais@cs.rpi.edu

Carlos A. Varela
Department of Computer Science
Rensselaer Polytechnic Institute

110 Eighth Street
Troy, NY 12180, USA

cvarela@cs.rpi.edu

ABSTRACT

In this paper, we describe the design and implementation
of PILOTS, a ProgrammIng Language for spatiO-Temporal
data Streaming applications. Using PILOTS, application
developers can easily program an application that handles
spatio-temporal data streams by writing a high-level declar-
ative program specification.

Whereas spatio-temporal data is available with various
spatial density and time frequency depending on data
sources (e.g., weather forecast data can be given hourly/-
daily for a vast geographic area, while GPS data can be
given every second or at a higher frequency for a specific ge-
ographic location), applications often need to process data
at a constant frequency. To view such heterogeneous data
streams as homogeneous data streams, PILOTS specifically
provides first-class support for data selection and interpola-
tion so that applications can get data consistently regardless
of the data’s original spatio-temporal heterogeneity.

To enable reasoning about errors in correlated spatio-
temporal data streams, we introduce the notion of error sig-
natures, patterns in output data streams that appear when
input data is erroneous. These patterns are produced thanks
to a mathematical model that explicitly specifies the redun-
dancy exhibited in the input data. PILOTS applications
readily produce error signatures, which can be an impor-
tant tool to semi-automatically detect data error conditions
and enable better decision support systems.

As a motivating application, we illustrate a PILOTS pro-
gram that receives as input data: the airspeed, the ground
speed, and the wind speed for a flight. We then compute the
error signatures exhibited by failing the airspeed data stream
simulating a pitot tube icing scenario (such as the one occur-
ring in Air France flight 447 in June 2009 ultimately killing
all people onboard), and by failing the ground speed data
stream simulating a GPS constellation shutdown.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL QUeST’12 November 6, 2012. Redondo Beach, CA,
USA
Copyright 2012 ACM 978-1-4503-1700-9/12/11 ...$15.00.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks

General Terms

Languages

Keywords

programming language, spatio-temporal, data streaming

1. MOTIVATION
Operating an aircraft is known as a complicated task since

there are a lot of complex correlations between the readings
in a cockpit’s instruments. If a failure happens during a
flight, it is not easy to find the cause of the failure by look-
ing at the available (potentially partially erroneous) data,
and also, a misinterpretation of instrument readings could
even lead to an accident as the tragic crash of Air France
flight 447, killing all 216 passengers and 12 aircrew [10]. The
records from the crash have suggested that the pilots lost
control of the airplane because they raised the nose of the
airplane when it should not have been brought up. Many
experts now understand that the airplane went into clouds
with thunderstorms and its iced speed sensors provided inac-
curate information to the autopilot, causing it to disengage.
The pilots then incorrectly reacted to the emergency by rais-
ing the nose of the plane when in fact it needed to go down
to avoid the stall.

An active redundant data-driven flight system may help
prevent crashes caused by malfunctioning sensors or other
data errors. For example, by comparing the air speed data
to the ground speed data, a flight system would be able
to fact check a bad air speed reading, assuming reasonable
constraints on the wind speed. If the (auto) pilot is only
operating by air speed data, they would have no way of
knowing that there is an error in the system and they would
respond to the incorrect data, upsetting the balance of the
plane. The ground speed data would instead provide a fact
checking mechanism because if airspeed were swiftly chang-
ing, ground speed would be doing the same. If airspeed is
changing, but ground speed remains unchanged, the more
active flight system would be able to notify the pilot of the
discrepancy, allowing for better informed decision making.

Considering the development of such an active flight sys-
tem, applications running on the flight system should deal

with (1) the airplane’s constantly changing location and
potentially inaccurate and incomplete input data streams
from various sensors and (2) reasoning about the input data
streams to identify failures and their potential sources using
redundancy among the input data streams.

To provide a technological foundation towards the purpose
of (1), we have defined a programming model for spatio-
temporal data streaming applications [3], which is specif-
ically designed for moving objects (e.g., airplanes, cars,
trains, and so on) to take spatio-temporal data streams as
inputs and output processed data streams. In this paper,
we describe the design and implementation of a program-
ming language following the model: PILOTS (ProgrammIng
Language for spatiO-Temporal data Streaming applica-
tions). PILOTS provides first-class support for space and
time specific operations including data selection and inter-
polation when no data is available for a certain location and
time. We also show some experimental results of running
PILOTS code on actual flight data with simulated error
conditions to produce error signatures, an important step
towards the realization of (2).

The rest of the paper is organized as follows. Section 2
introduces the PILOTS programming language for spatio-
temporal data streaming applications. Section 3 describes
the implementation of the language in detail, and Section 4
presents experimental results of running PILOTS code. Sec-
tion 5 shows related work, and finally we conclude the paper
in Section 6 highlighting potential future work.

2. SPATIO-TEMPORAL PROGRAMMING
LANGUAGE

2.1 System Architecture
Figure 1 shows the system architecture for applications

implemented in the PILOTS programming language. In
this architecture, the application gets data (d′1, d

′

2, . . . , d
′

n)
from the Data Selection module, which takes incoming data
streams (d1, d2, . . . , dn) as inputs, and then the application
indefinitely generates outputs (o1, o2, . . . , om) and data er-
rors (e1, e2, . . . , el) based on an Application Model. Each
input data stream di(x, y, z, t) is a function of location and
time. The number of arguments of di varies depending on
dimensions of the location information, that is, di(t) for 0-D
(i.e., no location support), di(x, t) for 1-D, di(x, y, t) for 2-D,
and di(x, y, z, t) for 3-D. Some data streams are coming in
real-time whereas some predicted information (e.g., weather
forecasts) is associated with future time periods.

The Data Selection module stores some amount of incom-
ing data stream until it becomes out of date. The application
acquires the selected or interpolated data (d′1, d

′

2, . . . , d
′

n)
from the Data Selection module at a certain rate specified
in the Application Model and computes both outputs and
data errors. The application continues this computing pro-
cess in an infinite loop unless the user explicitly specifies the
termination time.

Whereas spatio-temporal data is available with various
spatial density and time frequency depending on sources of
data in general (e.g., weather forecast data can be given
hourly/daily for a vast geographic area, GPS data can be
given every second or at higher frequency for a specific ge-
ographic location), the application often needs to process
data at a constant frequency. The Data Selection module

essentially allows an application to view a set of these het-
erogeneous data streams as a homogeneous data stream, and
therefore enables a separation of concerns: application pro-
grammers can focus on their application model.

Figure 1: System architecture of PILOTS programs
which handle spatio-temporal data streams

2.2 First Class Support for Data Selection
PILOTS specifically implements first-class support for

data selection and interpolation in the Data Selection mod-
ule so that the application can get data consistently regard-
less of its heterogeneity. Here we explain three methods for
data selection and interpolation: closest, euclidean, and in-
terpolate and show an example use of these methods.

2.2.1 Data Selection/Interpolation Methods

• closest
This method takes a 1-D argument (i.e., t, x, y, or z)
to find the data closest to a given location or time.
Figure 2 shows examples of selecting closest data to
the current time and location respectively. In Figure
2(a), when selecting the closest time to the current
time tcurr, di(tcurr) is not defined, but di(t) is defined
for {t | t1 ≤ t ≤ t2, t3 ≤ t ≤ t4, t5 ≤ t ≤ t6}. Since t4 is
closest to tcurr, we define d′i(tcurr) ! di(t4). Similarly,
we define d′i(xcurr) ! di(x3) for the example shown in
Figure 2(b).

• euclidean
This method takes 2-D or 3-D arguments to find the
data closest to a given location. Figure 3 shows
an example for the 2-D case, where data is not de-
fined for the current location lcurr = (xcurr, ycurr),
but are defined for l0, and l1. Since lcurr is clos-
est to l0 = (x0, y0) in Euclidean distance, we define
d′i(xcurr, ycurr) ! di(x0, y0).

• interpolate
This method takes 1-D, 2-D or 3-D arguments to lin-
early interpolate the defined data. It also takes another
argument ninterp to select the closest ninterp data from
a given location to interpolate. Suppose we have a sit-
uation shown in Figure 4, where data is not defined
for the current location lcurr = (xcurr, ycurr), but are
defined for l0, l1, and l2. Also, suppose that ninterp is

Figure 2: (a) Selecting the closest time (above); (b)
Selecting the closest x value (below)

Figure 3: Selecting the closest 2D region in Eu-
clidean distance

2, we select l0 and l1 since they are closer to lcurr than
l2. In such a case, we linearly interpolate the data de-
fined for l0 and l1 by taking a weighted sum based on
the Euclidean distance as follows:

d′i(xcurr, ycurr)

! (1−
∥l0 − lcurr∥

∑

1

j=0
∥lj − lcurr∥

) · di(x0, y0) +

(1−
∥l1 − lcurr∥

∑

1

j=0
∥lj − lcurr∥

) · di(x1, y1) (1)

Note that the equation (1) can be easily extended to
n data points.

Figure 4: Linear interpolation

Table 1: Wind speed prediction information (ID:0-2
for Albany, ID:3-5 for Pittston, and ID:6-8 for JFK
Airport

ID latitude(x), altitude(z) time(t) windspeed
longitude(y) [ft.] [knot]

0 42.73,-73.69 3000 04/03/12 14:00 20
1 42.73,-73.69 6000 04/03/12 14:00 32
2 42.73,-73.69 9000 04/03/12 14:00 40
3 41.34,-75.72 3000 04/03/12 14:00 17
4 41.34,-75.72 6000 04/03/12 14:00 31
5 41.34,-75.72 9000 04/03/12 14:00 41
6 40.64,-73.78 3000 04/03/12 14:00 18
7 40.64,-73.78 6000 04/03/12 14:00 33
8 40.64,-73.78 9000 04/03/12 14:00 43

2.2.2 Example
Imagine you are flying in an airplane at the altitude of

7000 ft. in the middle of New York state as shown in Figure
5. Given the predicted wind speed information for Albany,
Pittston, and JFK Airport in Table 1, how can we estimate a
reasonable wind speed for the current location at the current
time?

Figure 5: Example geographical relationship be-
tween the current location and surrounding cities

Suppose the current location represented by (latitude, lon-
gitude, altitude) is (42.20, -74.18, 7000 ft.) and the current
time is 04/03/12 15:34, we can get a wind speed by applying
euclidean(x,y), closest(t), and interpolate(z,2) se-
quentially as follows.

1. Apply euclidean(x,y) to all the data. Looking at
latitude(x) and longitude(y), the closest city to the
current location is Albany as shown in Figure 5. Select
the data from ID:0 to ID:2.

2. Apply closest(t) to data ID:0-2. Looking at time(t),
the current time is equally close to the time of data
ID:0-2. Select all three data.

3. Apply interpolate(z,2) to data ID:0-2. Since ninterp

is 2, pick up the two closest data in altitude(z), which
are ID:1 and 2. Finally, calculate the final wind speed
value similar to the equation (1) as (1− 1000/3000) ∗
32+(1−2000/3000)∗40 = 13.33+21.33 = 34.66 [knot].

2.3 Example Program Specifications
Here we show two example program specifications; one

is very simple and the other is slightly more complex than
the first one. See [3] for the detailed PILOTS grammar
definition. We will see the experimental results of these
programs later in Section 4.

2.3.1 Simple Example - Twice
Figure 6 shows one of the simplest program specifications

written in PILOTS, called twice. As the name says, it takes
two input streams, a(t) and b(t), where b is supposed to be
twice as large as a, and outputs an error defined by e =
(b−2∗a) every 1 second. Note that these two input streams
are not associated with any location information.

✬

✫

✩

✪

program twice ;
inputs

a: (t) using closest (t);
b: (t) using closest (t);

outputs ;
errors

e: (b - 2 * a) at every 1 sec;
end;

Figure 6: A simple declarative specification of the
twice application

2.3.2 More Complex Example - Flight Planning
This is an example of a simplified flight planning system.

Suppose that sensors in an airplane record airspeeds va dur-
ing a given flight and GPS units record the airplane’s flight
path over the ground including ground speeds vg at differ-
ent locations. An aircraft’s airspeed and ground speed are
related by the following mathematical formula (2), where va
and αa are the aircraft airspeed and angle (heading), and
vw and αw are the wind speed and direction acquired from
the weather forecast:

vg =
√

v2a + 2va · vw · cos(αa − αw) + v2w (2)

Also, we can compute crosswind velocity: vx = vw ·
sin(αa − αw). Therefore, given the aircraft desired course
αd, it is possible to compute the crab angle δ by using the
formula (3) so that the aircraft can use αa = αd + δ as
the heading to maintain the desired direction under varying
wind conditions.

δ = arcsin(vx/vg)

= arcsin

(

vw · sin(αa − αw)
√

v2a + 2va · vw · cos(αa − αw) + v2w

)

(3)

The above mentioned relationship can be brought into a
program specification shown in Figure 7, which outputs the
crab angle δ and error e that is the difference between the
monitored ground speed vg from GPS and the calculated
one with the equation (2).

In this flight planning example, there are three input data
streams in which each stream has two functions. Since
each of these two functions has the same source of in-
formation and arguments, they are declared as a single

input data stream. In the case of the first input data
stream, there are two functions, wind_speed(x,y,z,t) and
wind_angle(x,y,z,t), that share the same arguments and
information source (weather forecast). Data interpola-
tion/selection methods used for these two functions are eu-
clidean(x,y), closest(t), and interpolate(z,2). Just
like we explain in Section 2.2.2, these methods apply in or-
der: first, the closest x and y to xcurr and ycurr in Euclidean
distance are selected; second, the closest t to the current
time tcurr is selected; and finally, the final value is linearly
interpolated on the z-axis using up to the two closest data
points to zcurr as specified in the argument.

✬

✫

✩

✪

program flightplan ;
inputs

wind_speed , wind_angle : (x,y,z,t)
using euclidean (x,y), closest (t),
interpolate (z,2);

air_speed , air_angle : (x,y,t)
using euclidean (x,y), closest (t);

ground_speed , ground_angle: (x,y,t)
using euclidean (x,y), closest (t);

outputs
crab_angle :

arcsin (wind_speed *
sin(wind_angle -air_angle) /
sqrt(air_speed ^2 +

2* air_speed *wind_speed *
cos(air_angle -wind_angle) +
wind_speed ^2))

at every 1 min ;

errors
e: ground_speed -

sqrt(air_speed ^2 +
2* air_speed *wind_speed *
cos(air_angle -wind_angle) +
wind_speed ^2)

at every 1 min;
end;

Figure 7: A declarative specification of the flight
planning application

3. LANGUAGE IMPLEMENTATION
When executing a PILOTS program, its high-level pro-

gram specification needs to be compiled into Java code by
the PILOTS compiler. The generated application program
then uses the PILOTS runtime library to run the program.

3.1 Compiler
The compiler consists of two parts: a parser and a code

generator. The parser is developed using JavaCC [4]. Then
the code generator uses the abstract syntax tree created from
the parser and applies visitor pattern to generate Java code.

3.2 System Interaction
Figure 8 shows how a PILOTS application interacts with

the system. The interactions are based on a client-server
model using Internet sockets in which the application works
as a server and takes inputs from the clients on a single port.

It outputs some values to the specified output ports as well
as error values to the specified error ports.

Figure 8: System interaction of a PILOTS applica-
tion

When executing a compiled Java program, we specify in-
put, output, and error ports as follows. In this example, the
flightplan application illustrated in Section 2.3.2 takes an
input data stream on the port 10001 and sends output and
error streams to the hosts specified by 10.0.0.1:20001 and
10.0.0.2:30001 respectively.

$ java pilots.tests.Flightplan -input 10001
-outputs 10.0.0.1:20001 -errors 10.0.0.2:30001

3.2.1 Data Format
The input, output, and error data streams share the same

format shown in Table 2. The first line is used to declare
one or more variables (var0, var1,...) in a single data
stream. The values of the declared variables start from
the second line. The data stream can have multiple val-
ues (val0, val1,...) with various spatial and temporal
combinations: ex1 is just defined for a 2-D region; ex2 is
defined for a 3-D point and a time interval; ex3 is defined
for a 1-D interval and a particular time; ex4 is defined for
no location and a particular time. All lines have to end with
an end-of-line marker (\n). Especially, the last line has to
have only one end-of-line marker.

Note that the data format for input is compatible with
output and error, that is, we can connect either an output or
error port to an input port of another PILOTS application.

Table 2: The data stream format of input, output,
and error

first line #var0,var1,...\n
after ex1) x0,y0∼x1,y1::val0,val1,...\n
second line ex2) x,y,z:t0∼t1:val0,val1,...\n

ex3) x0∼x1:t:val0,val1,...\n
ex4) :t:val0,val1,...\n

last line \n

.

Here are some instances of spatio-temporal data for
ex1· · · ex4 respectively.

• ex1) 40.100,-76.300∼39.600,-76.300::166.0,215.0

• ex2) 42.749,-73.802,3000:2012-04-03 140000-0500
∼2012-04-03 210000-0500:15.0,320.0

• ex3) 42.6886∼43.9258:2012-04-03 140900-0500
:112.0,222.0

• ex4) :2012-04-03 141400-0500:42.5486,-74.1142,8100.0

3.2.2 Running Mode
Two modes are available for the user to run PILOTS ap-

plications as shown below.

• real-time mode: This mode is default and is intended to
be used for receiving data from sensors and processing
it in real-time. If the frequency of an output is specified
as “at every 1 min” in the program specification, the
program actually outputs data once every 1 minute.
Also, in this mode, the program finishes if one of input
data streams sends the last line marker (\n) or certain
amount of time has elapsed, which can be specified by
the user in the command line as -DtimeSpan=30min.

• simulation mode: This mode is used for simulations
and is activated if the user gives a past time span
in the command line as -DtimeSpan=t0∼t1. The PI-
LOTS runtime sets its internal time as t0 and virtually
progress the time as the program runs, and when the
internal time reaches t1, the program finishes. The
user can get outputs as fast as possible. This mode
is intended to be used for processing recorded data in
the past.

In either mode, time stamp of input streams should match
the internal time of the PILOTS runtime to get proper out-
puts.

3.3 Runtime Library
The PILOTS runtime library is in charge of starting a

data receiving server, storing received data, providing data
selection/interpolation service to the application, and send-
ing processed data to output/error hosts.

Primary classes included in the PILOTS runtime library
shown in Figure 9 are explained as follows.

• PilotsRuntime class is extended by the application
and provides all basic functions to run a PILOTS ap-
plication other than application-specific processing. It
starts DataReceiver to start receiving data, requests
stored data from DataStore, and sends calculated out-
puts and errors to other hosts.

• DataReceiver class receives data from data input
clients from a port specified in the command-line argu-
ments. Upon accepting data, it launches a new worker
thread to receive data and the created thread requests
to add these data to DataStore.

• DataStore class accepts data from DataReceiver as a
string, and then it asks SpatioTempoData to parse the
string and stores the parsed data. It also implements
getData() method supporting closest, euclidean,
interpolate for data selection. When comparing lo-
cations and time for data selection/interpolation, it
asks for the current time and location from Current-
LocationTimeService. Stored data are accessed from
multiple threads (i.e., threads for adding data from
DataReceiver vs. threads getting data from Pilot-
sRuntime), so the data have to be protected from si-
multaneous data access.

• CurrentLocationTimeService class is an interface
class for providing the current time and location. Users
have to implement this class for the system to work

Figure 9: Class diagram of PILOTS runtime library

(e.g., SimpleTimeService and SimulationService).
The implemented class can either return the actual
current time for the real-time mode or past time for
the simulation mode.

4. EXPERIMENTS
In this section, we report the results of two experiments.

The first experiment has been done with the twice appli-
cation to illustrate how error signatures exhibit different
shapes depending on simulated input data streams. The
second one has been conducted with the flightplan appli-
cation to apply PILOTS to data sampled in the real world
and see how PILOTS’ first-class support for data selection
and interpolation work for real data.

4.1 Simulated Data Inputs - Twice

4.1.1 Experimental Setup
As we present in Figure 6, the twice application takes two

inputs, a and b, and we prepare an independent client for
each input to test the following four different scenarios.

• Scenario A: There are random timing jitters between
one data and another on the data input clients. That
is, every 1 ± ϵ seconds, the variable a’s input comes
as 1, 2, 3, . . ., whereas the variable b’s input comes as
2, 4, 6,

• Scenario B: The variable a’s data stream becomes con-
sistently one second behind the variable b’s input data
stream at some point of time.

• Scenario C: The variable a’s data stream stops provid-
ing data at some point of time.

• Scenario D: The variable b’s data stream stops provid-
ing data at some point of time.

In all the scenarios, the application runs in the real-time
mode with SimpleTimeService that returns the current time
only. We start the twice application followed by the data in-
put clients, and then record the error output for 120 seconds
once data from the clients reaches the PILOTS runtime.

4.1.2 Results
Figure 10 shows different types of errors generated with

the four different scenarios. In Figure 10(a), most of the time
the error stays at zero, but there are several spikes due to
transient fluctuation of the data input timing. It happens
occasionally since the use of closest(t) causes the Data
Selection module to select data at one second earlier or one
second later than it is supposed to select. This type of error
is unavoidable without a special synchronization mechanism
between multiple data streams. Figure 10(b) shows a sig-
nature of out-of-sync input data streams. As shown in the
graph, the error becomes consistently large at around 30 sec-
onds of the simulation time. This is because the variable a’s
input data stream becomes consistently one second behind
the variable b’s input data stream. Figure 10(c) suggests
more critical failure of the variable a’s input data source. At
around 50 seconds of the simulation time, the error starts
growing linearly. This linear increase of the error explains
that the input data stream of the variable a stops coming
after 50 seconds of the simulation time, which potentially
means that a critical failure occurred at the source of the
variable a. Similarly, Figure 10(d) suggests that a critical
failure occurred at the source of the variable b.

!"

!#

!$

%

$

#

"

% #% &% '% (% $%% $#%

!"#$%&'$()

!"# $%%&%'()*+",-%.'/&%'01.+"%)&'2 !3# $%%&%'()*+",-%.'/&%'01.+"%)&'4

!%)*

%

%)*

$

$)*

#

#)*

% #% &% '% (% $%% $#%

!"#$%&'$()

!*%

%

*%

$%%

$*%

% #% &% '% (% $%% $#%

!"#$%&'$()

!$*%

!$%%

!*%

%

*%

% #% &% '% (% $%% $#%

!"#$%&'$()

!1# $%%&%'()*+",-%.'/&%'01.+"%)&'5 !6# $%%&%'()*+",-%.'/&%'01.+"%)&'7

Figure 10: Error signatures generated by the twice
application

As we can see from the graphs, errors behave differently
depending on the input data streams, thus those error sig-
natures could tell us valuable information about potential
failures in the data sources.

4.2 Real Data Inputs - Flight Planning

4.2.1 Experimental Setup
The second author is a general aviation private pilot

and we conducted a simulation with the flightplan pro-
gram based on his actual flight from Albany, New York to
Tipton, Maryland (near Washington D.C.) on April 3rd,
2012. air_speed and air_angle were manually collected
during the flight, whereas ground_speed and ground_angle
were automatically collected from online data [2]. We have
to use weather forecast information for wind_speed and
wind_angle from [6] since we could not record the actual
wind information during the flight.

Note that air_speed and air_angle are sparsely given as
shown in Figure 11 since they were manually recorded while

operating the aircraft, and also the density of wind_speed
and wind_angle is not very high as we have previously
seen in Table 1. Unlike other data, ground_speed and
ground_angle are given every minute.

✤

✣

✜

✢

#air_speed ,air_angle
42.748 , -73.802~41.476 , -75.483::162 ,246
41.476 , -75.483~41.000 , -76.000::161 ,239
41.000 , -76.000~40.100 , -76.300::161 ,221
40.100 , -76.300~39.600 , -76.300::166 ,215
39.600 , -76.300~39.500 , -76.400::165 ,213
39.500 , -76.400~39.085 , -76.759::135 ,204

Figure 11: Formatted data for airspeed and air angle
from the April 3rd flight

Just like the previous section with the twice application,
we test the following four different scenarios including three
simulated error conditions.

• Scenario A: No error is added. Use the real data only.

• Scenario B: Simulate an airspeed sensor (called pitot
tube) icing failure. If the airspeed sensor is iced, typ-
ically the airspeed suddenly drops in a few seconds,
and then it keeps reporting a constant value.

• Scenario C: Simulate a GPS failure. GPS loses satel-
lites and keeps reporting 0s as the values for both
ground speed and ground angle.

• Scenario D: Simulate both an airspeed sensor icing fail-
ure and a GPS failure mentioned above.

For all the scenarios, we run the program in the simulation
mode with SimulationService that returns the location and
time based on the actual flight path. To specify the start
time and end time of the simulation, we run the program
with the option -DtimeSpan="2012-04-03 1404∼2012-04-
03 1545" for the 1 hour and 41 minutes flight.

4.2.2 Results
Figure 12 plots the error and crab angle from the flight

planning application for Scenario A (no errors). Looking at
the graph, we notice that the error is large at the beginning
of the flight (around 0∼9 minutes) and also at the end of
the flight (around 90∼100 minutes). The reason is inaccu-
racy of the airspeed, which is illustrated in Figure 13(a) in
which we plot the airspeed, ground speed, calculated ground
speed, and error separately from the outputs of the flight-
plan application to analyze the reasons of the error. In the
graph, we see that the airspeed is almost constant whereas
actual ground speed changes dynamically at the time of de-
parture and landing. In general, airspeed is supposed to
change a lot when departing and landing; however, since
airspeed was manually recorded and these periods are the
busiest for flying the airplane, it is not accurate. Conse-
quently, inaccuracy in airspeed makes the calculated ground
speed erroneous since it is directly related to the airspeed
according to the equation (2). Despite the large error when
departing and landing, the error stays relatively low around
10∼90 minutes, and that fact suggests PILOTS’ data se-
lection/interpolation methods work well during this period

since the relationship presented by the equation (2) holds
well.

In the case of Scenario B, Figure 13(b) shows that the
error suddenly increases at around 40 minutes caused by a
sudden drop of the airspeed (150 to 50 knots in two min-
utes). Unlike Scenario B, Scenario C shows a different error
signature as shown in Figure 13(c). From the graph, we
can see that the ground speed suddenly drops from 170 to
0 knot at around 40 minutes and that causes the error to
drop accordingly. When we have both failures, we get an er-
ror signature as shown in Figure 13(d). This error signature
tells us that the errors for Scenario B and C do not cancel
out, but they are emerged as a combination of the individ-
ual error signatures. This result potentially means that we
may be able to tell the causes of multiple errors from one
combined error signature.

As we can see from the graphs, there is a clear distinction
between the error signatures. These results encourage us to
pursue automated reasoning about data errors and recovery.

!"#

!$%

!$&

!$'

!$"

!$#

!%

!&

!'

!"

#

!$##

!%#

!&#

!'#

!"#

#

"#

'#

&#

%#

$##

$# "# (# '#)# &# *# %# +# $##

!
"
#
$
%
&
'
(
)
*
%+
,
*
(
"
*
*
-

.
"
"
/
"
%
+
0
'
/
1
-

!"#$%&#"'(

!"##$#

!%#&'!&()*"

Figure 12: Error and output generated by the
flightplan application

5. RELATED WORK
Spatio-temporal constraint logic programming has been

proposed. STACLP [7] offers first-class support for repre-
senting and reasoning about spatial and temporal data. A
similar logic language to STACLP, MuTACLP [5][1], has
been applied to GIS for spatio-temporal reasoning [8]. Both
STACLP and MuTACLP are implemented based on a Pro-
log system. Programming languages that support proba-
bilistic reasoning have also been proposed. PRISM[9] is a
logic-based language that integrates logic programming and
stochastic reasoning including parameter learning. PRISM
is capable of parameter learning from a given set of data and
estimates the probability to best explain the data. PRISM is
also built on top of a Prolog system. Our programming lan-
guage is also highly declarative and generates code to help
understand and reason about spatio-temporal data streams.

6. CONCLUSIONS
We presented the design and implementation of PILOTS,

a programming language for spatio-temporal data streaming
applications. The language enables to specify in a declara-
tive (high-level) manner the mathematical relationship be-
tween data streams. We also illustrated different methods
that can be combined to interpolate and select the data.
These methods enable developers to declaratively specify
how to convert potentially heterogeneous data streams—i.e.,
streams using different scales in space and time—into homo-
geneous data streams amenable to processing and analysis.

!"##

!$%#

!$##

!%#

#

%#

$##

$%#

"##

$# "# &# '# %# (#)# *# +# $##

!
"
#
#
$
%&
%
'
(
(
)
(
%*
+
,
)
-
.

!"#$%&#"'(

!"##

!$##

#

$##

"##

$# "# &# '# %# (#)# *# +# $##

!
"
#
#
$
%&
%
'
(
(
)
(
%*
+
,
)
-
.

!"#$%&#"'(

!"# $%%&%'()*+",-%.'/&%'01.+"%)&'2

!3# $%%&%'()*+",-%.'/&%'01.+"%)&'4

!1# $%%&%'()*+",-%.'/&%'01.+"%)&'5

!"##

!$##

#

$##

"##

$# "# &# '# %# (#)# *# +# $##

!
"
#
#
$
%&
%
'
(
(
)
(
%*
+
,
)
-
.

!"#$%&#"'(

!"##

!$##

#

$##

"##

$# "# &# '# %# (#)# *# +# $##

!
"
#
#
$
%&
%
'
(
(
)
(
%*
+
,
)
-
.

!"#$%&#"'(

!6# $%%&%'()*+",-%.'/&%'01.+"%)&'7

!"#$%&''(

!)$*+,(

%&''(

-".-+."/'(

)$*+,(

%&''(

!'$$*$

Figure 13: Error signatures and speed information
generated by the flightplan application

An important goal of this work is to enable spatio-
temporal data analyses that detect errors in input data
streams with high probability. This is accomplished by
explicitly modeling redundancy in the input data streams
allowing application developers to not only specify output
data streams but also to specify mathematically the relation-
ship between redundant data as error streams. These error
streams can be seen as signatures that characterize different
input data error conditions with high probability.

We used PILOTS to uncover the error signatures of a
trivial application (twice) illustrating clearly distinguishable
patterns on different kinds of failure (out of synchronization
and data stream loss failures). We subsequently used PI-
LOTS to model the relationship between air speed, ground
speed, and wind speed of an actual general aviation flight be-
tween Albany, NY and Washington, DC. We computed the
error signatures for (i) normal conditions, (ii) a simulated
pitot tube failure (affecting the airspeed data stream), (iii)
a simulated GPS constellation failure (affecting the ground
speed data and ground angle stream,) and (iv) a simulta-
neous failure of the pitot tube (ii) and GPS system (iii).
These error signatures illustrate that patterns can be used
to discover with high likelihood the source of potential data
errors.

Future work includes modeling more complex data rela-
tionships in aviation and navigation systems, discovering er-
ror signatures for common data error conditions, using er-
ror signatures as a means to semi-automate error recovery
and reason about spatio-temporal data streams, and apply-
ing the programming model and language to other domains
generalizing it as appropriate.

ACKNOWLEDGMENTS

We would like to thank Jaemyeong Eo and Yazmin Feliz for
their help on creating test data. This research is partially
supported by Air Force Office of Scientific Research Grant
No. FA9550-11-1-0332.

7. REFERENCES
[1] P. Baldan, P. Mancarella, A. Raffaetà, and F. Turini.

MuTACLP: A language for temporal reasoning with
multiple theories. In Computational Logic: Logic
Programming and Beyond’02, pages 1–40, 2002.

[2] FlightAware. Flight track log for N756VH on
03-Apr-2012 (KALB-KFME).
http://flightaware.com/live/flight/N756VH/
history/20120403/1800Z/KALB/KFME/tracklog.

[3] S. Imai and C. A. Varela. A programming model for
spatio-temporal data streaming applications. In
Dynamic Data-Driven Application Systems (DDDAS
2012), pages 1139–1148, Omaha, Nebraska, June 2012.

[4] JavaCC Development Group (Open Source Project
under BSD License). Java compiler compiler (javacc) -
the java parser generator. http://javacc.java.net/.

[5] P. Mancarella, G. Nerbini, A. Raffaetà, and F. Turini.
MuTACLP: A language for declarative GIS analysis.
In Computational Logic’00, pages 1002–1016, 2000.

[6] NOAA’s National Weather Service. Forecast winds
and temps aloft.
http://aviationweather.gov/products/nws/winds/.

[7] A. Raffaetà and T. W. Frühwirth. Spatio-temporal
annotated constraint logic programming. In PADL’01,
pages 259–273, 2001.

[8] A. Raffaetà, F. Turini, and C. Renso. Enhancing GISs
for spatio-temporal reasoning. In Proceedings of the
10th ACM international symposium on Advances in
geographic information systems, GIS ’02, pages 42–48,
New York, NY, USA, 2002. ACM.

[9] T. Sato and Y. Kameya. Parameter learning of logic
programs for symbolic-statistical modeling. In Journal
of Artificial Intelligence Research(JAIR), volume 15,
pages 391–454, 2001.

[10] Wikipedia. Air France Flight 447. http:
//en.wikipedia.org/wiki/Air_France_Flight_447.

Procedia Computer Science 00 (2012) 1–10

Procedia Computer

Science

International Conference on Computational Science, ICCS 2012

A programming model for
spatio-temporal data streaming applications

Shigeru Imaia,⇤, Carlos A. Varelaa

aComputer Science Department, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, USA

Abstract

In this paper, we describe a programming model to enable reasoning about spatio-temporal data streams. A
spatio-temporal data stream is one where each datum is related to a point in space and time. For example, sensors
in a plane record airspeeds (va) during a given flight. Similarly, GPS units record an airplane’s flight path over the
ground including ground speeds (vg) at di↵erent locations. An aircraft’s airspeed and ground speed are related by the
following mathematical formula: vg =

p
v2

a + 2va · vw · cos(↵a � ↵w) + v2
w, where va and ↵a are the aircraft airspeed

and heading, and vw and ↵w are the wind speed and direction. Wind speeds and directions are typically forecast in
3,000-foot height intervals over discretely located fix points in 6-12 hour ranges. Modeling the relationship between
these spatio-temporal data streams allows us to estimate with high probability the likelihood of sensor failures and
consequent erroneous data. Tragic airplane accidents (such as Air France’s Flight 447 on June 1st, 2009 killing all 216
passengers and 12 aircrew aboard) could have been avoided by giving pilots better information which can be derived
from inferring stochastic knowledge about spatio-temporal data streams. This work is a first step in this direction.

Keywords: programming models, spatio-temporal data, data streaming

1. Introduction

Spatio-temporal data streams, where each datum is related to a point or a range of space and time, are pervasive.
We see such data streams in many occasions in our daily lives, for instance, temperatures, prices of gasoline, flight
schedules of airplanes, and so on. Massive amounts of spatio-temporal data are continuously generated by sensors,
IT systems, or computer programs, and consumed by humans; however, today’s most commonly used programming
languages (e.g., C/C++, Java, PHP, JavaScript, python, etc.) do not have first-class support for space and time since
they are designed to be general-purpose. The downside of the general-purpose approach is the complexity and size of
code. Since these programming languages are imperative, meaning that we have to use for, if, or while to control the
flow of the programs and explicitly handle state, the code can get large and complex easily.

In contrast to the general-purpose approach, if we know a specific problem domain very well and want to provide
first-class support for key domain concepts (such as space and time), we can take a domain-specific approach. The

⇤Corresponding author
Email addresses: imais@cs.rpi.edu (Shigeru Imai), cvarela@cs.rpi.edu (Carlos A. Varela)

Shigeru Imai and Carlos A. Varela / Procedia Computer Science 00 (2012) 1–10 2

code written in the domain-specific approach is much simpler and more declarative as in logic programming lan-
guages [1] and therefore simpler to write, read, and reason about, but it is generally less expressive, than code written
in general-purpose programming languages.

Operating an aircraft is a complicated task since there are a lot of complex correlations between the instruments
in a cockpit. If some failure happens during a flight, it is not easy to find the cause of the failure by looking at the
available (potentially partially erroneous) data , and also, a misinterpretation of instrument readings could even lead to
a tragic accident [2]. We illustrate our programming model with a flight planning system that reports potential sources
of data problems such as mechanical failures or extreme weather conditions. An explicit mathematical model of data
co-relationships can with high probability signal data errors, potentially providing pilots with better information in
emergency scenarios, allowing them to take appropriate actions in a timely manner, and ultimately reaching their
destination safely and e�ciently.

In this paper, we present our initial e↵ort on designing a programming model for spatio-temporal data streaming
applications, aiming to apply the model to a flight planning system. The model provides first-class support for space
and time specific operations including data selection and interpolation when no data is available for a certain location
and time.

2. Motivation

Auto-pilots cannot take the right action when the data they are receiving is out of date or incorrect. This may have
led to the tragic crash of Air France flight 447, killing all 216 passengers and 12 aircrew [2]. The records from the
crash have suggested that the pilots lost control of the airplane because they raised the nose of the airplane when it
should not have been brought up. Many experts now understand that the airplane went into clouds with thunderstorms
and its iced speed sensors provided inaccurate information to the autopilot, causing it to disengage. The pilots then
incorrectly reacted to the emergency by raising the nose of the plane when in fact it needed to go down to break the
stall.

An active redundant data-driven flight system may help prevent crashes caused by sensor or other data errors. For
example, by comparing the airspeed data to the ground speed data, a flight system would be able to fact check a bad
airspeed reading, assuming reasonable constraints on the wind speed. If the pilot is only operating by airspeed data
alone, they would have no way of knowing that there is an error in the system and they would respond to the incorrect
data, upsetting the balance of the plane. The ground speed data would instead provide a fact checking mechanism
because if airspeed were swiftly changing, ground speed would be doing the same. If airspeed is changing, but ground
speed remains unchanged, the more active flight system would be able to notify the pilot of the discrepancy, allowing
for better informed decision making.

Our goal is to develop a data streaming programming model that makes explicit the connections between di↵erent
spatio-temporal data streams. Flight systems developed using our model would make explicit the redundancies in
the data and allow the di↵erent data streams to essentially fact check each other greatly reducing the possibility of
accidents. The proposed spatio-temporal data streaming programming model can also be applied to other domains
generating space and time specific data.

3. Spatio-Temporal Data Streaming Programming Model

3.1. Programming Model

Our proposed programming model is designed for applications that handle spatio-temporal input data streams as
shown in Figure 1. In this model, the application gets data (d01, d

0
2, . . . , d

0
n) from the data selection module, which takes

incoming data streams (d1, d2, . . . , dn) as inputs, and then the application indefinitely generates outputs (o1, o2, . . . , om)
and data errors (e1, e2, . . . , el) based on an application model. Each input data stream di(x, y, z, t) is a function of
location and time. The number of arguments of di varies depending on dimensions of the location information, that is,
di(t) for 0-D (i.e., no location support), di(x, t) for 1-D, di(x, y, t) for 2-D, and di(x, y, z, t) for 3-D. Some data streams
are coming in real-time whereas some predicted information (e.g., weather forecasts) is associated with future time
periods.

Shigeru Imai and Carlos A. Varela / Procedia Computer Science 00 (2012) 1–10 3

Figure 1: Programming model handling spatio-temporal input data streams

Table 1: An example of a weather forecast input data stream
Location Altitude Time Chance of Icing

(lat1, long1) � (lat2, long2) (f rom) � (to)
(42.73, -73.69)-(42.70, -73.66) 8000 ft. 01/30/2012:10:00-12:00 (GMT) 50%
(42.73, -73.69)-(42.70, -73.66) 8000 ft. 01/30/2012:12:00-14:00 (GMT) 60%
(42.73, -73.69)-(42.70, -73.66) 8000 ft. 01/30/2012:14:00-16:00 (GMT) 80%

Table 1 shows an example of a weather forecast input data stream coming to the Data Selection module. As
noted from the table, the location information is given by regions where each region is represented by two horizontal
locations (latitude, longitude) and an altitude, and the time information is given by time periods where each period
is represented by two time points in GMT. Since not all the data is on the table, for example, chance of icing is not
defined when the time is 01/30/2012:09:00 (GMT); however, we can define data by selecting or interpolating the
existing data when no data is defined for a given location and time. In our programming model, the Data Selection
module stores some amount of incoming data stream until it becomes out of date. The application acquires the selected
or interpolated data (d01, d

0
2, . . . , d

0
n) from the Data Interpolation module at a certain rate specified in the application

and computes both outputs and data errors. The application continues this computing process in an infinite loop until
the user requests to stop the computation. The Data Selection module essentially allows an application to view a set of
heterogeneous data streams as a homogeneous data stream, and therefore enables a separation of concerns: application
programmers can focus on their application model.

3.2. Support for Spatio-Temporal Data Selection

We define two types of data selection and one data interpolation method for the location and time as shown below.
These operations are applicable to either single variables (i.e. t, x, y, or z) or multiple variables (i.e. combinations of
t, x, y, and z. By using these operations, application programmers can use locally related data even in the case when
the given data is sparse.

• closest
This method takes a 1-D argument (i.e., t, x, y, or z) to find the data closest to a given location or time. Figure
2 shows examples of selecting closest data to the current time and location respectively. In Figure 2(a), when
selecting the closest time to the current time tcurr, di(tcurr) is not defined, but di(t) is defined for {t | t1  t 

Shigeru Imai and Carlos A. Varela / Procedia Computer Science 00 (2012) 1–10 4

t2, t3  t  t4, t5  t  t6}. Since t4 is closest to tcurr, we define d0i (tcurr) , di(t4). Similarly, we define
d0i (xcurr) , di(x3) for the example shown in Figure 2(b).

Figure 2: (a) Selecting the closest time; (b) Selecting the closest x value

• euclidean
This method takes 2-D or 3-D arguments to find the data closest to a given location. Figure 3 shows an example
for the 2-D case, where data is not defined for the current location lcurr = (xcurr, ycurr), but are defined for l0, and
l1. Since lcurr is closest to l0 = (x0, y0) in Euclidean distance, we define d0i (xcurr, ycurr) , di(x0, y0).

Figure 3: Selecting the closest 2D region in Euclidean distance Figure 4: Linear interpolation

• linear interpolation
This method takes 1-D, 2-D or 3-D arguments to interpolate the defined data. It also takes another argument
ninterp to select closest ninterp data from a given location to interpolate. Suppose we have a situation shown in
Figure 4, where data is not defined for the current location lcurr = (xcurr, ycurr), but are defined for l0, l1, and l2.
Also, suppose that ninterp = 2, we select l0 and l1 since they are closer to lcurr than l2. In such a case, we linearly
interpolate the data defined for l0 and l1 by taking a weighted sum based on the Euclidean distance as follows:

d0i (xcurr, ycurr) , (1 � kl0 � lcurrkP1
i=0 kli � lcurrk

) · di(x0, y0) + (1 � kl1 � lcurrkP1
i=0 kli � lcurrk

) · di(x1, y1) (1)

Note that the equation (1) can be easily extended to n data points.

Multiple methods can be specified in the application program and they apply to the input data in order. If multiple
data get selected by one method (e.g., more than one closest point), a subsequent method takes that multiple data as
the input and further select data. If there still remains more than one data after applying all the methods, then we
implicitly apply linear interpolation to output the final value.

4. Spatio-Temporal Data Streaming Programming Language

In this section, we describe a spatio-temporal programming language by defining its grammar and showing two
example programs.

Shigeru Imai and Carlos A. Varela / Procedia Computer Science 00 (2012) 1–10 5

4.1. Grammar Definition

A grammar definition for a declarative programming language following the proposed programming model is
shown in Figure 5. A program (Program) consists of four parts: a program name, inputs, outputs, and errors. The
program name is defined by a variable name (Var). The inputs can have multiple entries of Input, which is defined
by one or more input variables (Vars), a dimension of the inputs (Dim), and a data selection method described in the
previous section (Method). The outputs and errors are defined separately, but have the same output format (Output).
Output is defined by one or more output variables (Vars), mathematical expressions (Exps), and a time interval to
specify the frequency of the output (Time).

'

&

$

%

Program ::= program Var;
inputs Input*
outputs Output*
errors Output*

Input ::= Vars: Dim using Methods;
Output ::= Vars: Exps at every Time;
Dim ::= ’(t)’ | ’(x,t)’ | ’(x,y,t)’ | ’(x,y,z,t)’

Methods ::= Method | Method, Methods
Method ::= (closest | euclidean | interpolate) ’(’ Exps ’)’

Time ::= Number (nsec | usec | msec | sec | min | hour | day)

Exps ::= Exp | Exp, Exps
Exp ::= Func(Exps) | Exp Func Exp | ’(’ Exp ’)’ | Value
Func = { +, -, *, /, sqrt, sin, cos, tan, abs, ...}
Value ::= Number | Var
Number ::= Sign Digits | Sign Digits’.’Digits
Sign ::= ’+’ | ’-’ | ’’

Digits ::= Digit | Digits Digit
Digit = { 0, 1, 2, ...,9 }
Vars ::= Var | Var, Vars
Var = { a, b, c, ...}

Figure 5: Spatio-temporal data streaming programming language grammar

4.2. Example Programs

4.2.1. Simple Example
Here we show one of the simplest programs implemented by the proposed programming model. It takes two input

streams, a(t) and b(t), and outputs an error defined by e = (b0 � 2a0) every 1 second as shown in Figure 6. Note that
these two input streams are not associated to any location information.

An example specification of the above simple program is shown in Figure 7. In this example, there are two input
data streams in which each stream is a function of time. The data selection method used in the program is specified by
closest(t), which means that the program instructs the Data selection module to select the closest t to the current
time tcurr.

Errors behave di↵erently depending on the input data streams, thus they tell us valuable information about the
information sources. Figure 8 shows three di↵erent types of errors generated by simulations of the simple example
program specification described in Figure 7. The assumption here is that every 1 ± ✏ seconds, the variable a’s input
comes as 1±✏, 2±✏, 3±✏, . . .whereas the variable b’s input comes as 2±✏, 4±✏, 6±✏, . . ., i.e., they hold the mathematical
relationship: b = 2 * a. In Figure 8(a), most of the time the error stays at zero, but there are several spikes due to
transient fluctuation of the data input timing. It happens occasionally since the use of closest(t) causes the Data
Selection module to select data at one second earlier or one second later than it is supposed to select. This type of

Shigeru Imai and Carlos A. Varela / Procedia Computer Science 00 (2012) 1–10 6

error is unavoidable without a special synchronization mechanism between multiple data streams. Figure 8(b) shows
an example of the out-of-sync error. As shown in the graph, the error becomes consistently large at around 30 seconds
of the simulation time. This is because the variable a’s input data stream becomes consistently one second behind
the variable b’s input data stream. Figure 8(c) suggests more critical failure of the variable a’s input data source. At
around 40 seconds of the simulation time, the error starts growing linearly. This linear increase of the error explains
that the input data stream of the variable a stops coming after 40 seconds of the simulation time, which potentially
means that a critical failure occurred at the source of the variable a.

Figure 6: A simple application with temporal data streams

'

&

$

%

program twice;

inputs

a: (t) using closest(t);

b: (t) using closest(t);

outputs;

errors

e: (b - 2 * a)

at every 1 sec;

end;

Figure 7: A simplest program specification

Figure 8: Examples of errors generated by a simple example: (a) Timing transient error; (b) Out-of-sync error; (c) Data input failure

4.2.2. Flight Planning
This is an example of a simplified flight planning system. Suppose that sensors in a plane record airspeeds va

during a given flight and GPS units record the airplane’s flight path over the ground including ground speeds vg

at di↵erent locations. An aircraft’s airspeed and ground speed are related by the following mathematical formula:
vg =

p
v2

a + 2va · vw · cos(↵a � ↵w) + v2
w, where va and ↵a are the aircraft airspeed and heading, and vw and ↵w are the

wind speed and direction. Also, we can compute crosswind velocity: vx = vw · sin(↵a � ↵w). Therefore, given the
aircraft desired course ↵d, it is possible to compute the crab angle � by using the formula (2) so that the aircraft can
use ↵a = ↵d + � as the heading to maintain the desired direction under varying wind conditions. The above mentioned
relationship can be modeled as an application shown in Figure 9, which outputs the crab angle � and error e that is the
di↵erence between the monitored ground speed vg from GPS and the calculated one from va, vw,↵a, and ↵w.

� = arcsin(vx/vg) = arcsin
0
BBBBB@

vw · sin(↵a � ↵w)
p

v2
a + 2va · vw · cos(↵a � ↵w) + v2

w

1
CCCCCA (2)

Shigeru Imai and Carlos A. Varela / Procedia Computer Science 00 (2012) 1–10 7

Figure 9: A flight planning application model using the spatio-temporal data streaming programming model

A code example of the flight planning application is shown in Figure 10. In this example, there are three in-
put data streams in which each stream has two functions. Since each of these two functions has the same source
of information and arguments, they are declared as a single input data stream. In the case of the first input data
stream, there are two functions, wind speed(x,y,z,t) and wind angle(x,y,z,t), that share the same arguments
and information source (weather forecast). Data interpolation methods used for and wind speed(x,y,z,t) and
wind angle(x,y,z,t) are specified by euclidean(x,y), closest(t), and interpolate(z, 3). These meth-
ods apply in order: first, the closest x and y to xcurr and ycurr in Euclidean distance are selected; second, the closest t
to the current time tcurr is selected; and finally, the final value is linearly interpolated on the z-axis using up to three
closest data points to zcurr as specified in the argument.

'

&

$

%

program flightplan;

inputs

wind_speed , wind_angle: (x, y, z, t)

using euclidean(x, y), closest(t), interpolate(z, 3);

air_speed , air_angle: (x, y, z, t)

using euclidean(x, y), closest(t);

ground_speed , ground_angle: (x, y, z, t)

using euclidean(x, y), closest(t);

outputs

crab_angle: arcsin(wind_speed * sin(wind_angle - air_angle) /

sqrt(air_speed ^2 + 2 * air_speed * wind_speed *

cos(wind_angle - air_angle) + wind_speed ^2))

at every 1 sec;

errors

e: ground_speed - sqrt(air_speed ^2 + 2 * air_speed * wind_speed *

cos(wind_angle - air_angle) + wind_speed ^2))

at every 1 sec;

end;

Figure 10: A declarative specification of the flight planning application

Shigeru Imai and Carlos A. Varela / Procedia Computer Science 00 (2012) 1–10 8

Figure 11: Normal conditions signature observed from a flight planning simulation

Figure 12: Pitot tube failure error signature observed from a flight planning simulation (the monitored airspeed starts decreasing at time = 5000
due to the pitot tube failure)

Example simulation results of the flight planning application generated from the program specification described
in Figure 10 are shown in Figure 11 and Figure 12. In this simulation, a simple autopilot system navigates an airplane
by using the crab angle received from the application. The airplane flies at 100 knots from Washington D.C. to Albany,
which is 281 nautical miles (323 miles) away. The simulation also takes into account the e↵ect of winds. In a normal
condition, the autopilot successfully navigates the airplane to the destination with an ideal path as shown in Figure
11. The error of ground speed stays zero all through the simulation and the crab angle is almost constant (it actually
slightly increases to adapt the wind speed changes). Figure 12 shows an error signature caused by a pitot tube failure.
At time = 5000, a pitot tube starts icing and that causes the monitored airspeed to decrease gradually and gets almost
zero eventually, while the airplane keeps flying at 100 knots. As seen from the graph, the autopilot’s navigation does
not work successfully this time. We can see a clear signature of the error here: the ground speed error grows quickly
as soon as the airspeed start decreasing at time = 5000 and remains around 70 knots. The crab angle also grows up as
the airspeed decreases.

As we can see from the simulation, a pilot can benefit from this application by following the crab angle to con-
trol the direction of the airplane, and also monitoring the error output to see if there is a mechanical failure of the
instruments or the forecast information is wrong.

5. System Interaction

Figure 13 shows how a spatio-temporal application interacts with the system. The interactions are based on a
client-server model using Internet sockets in which the application works as a server and takes inputs from the clients
on a single port. It outputs some values to the specified output ports as well as error values to the specified error ports.

Shigeru Imai and Carlos A. Varela / Procedia Computer Science 00 (2012) 1–10 9

Figure 13: System interaction of a spatio-temporal data streaming application

When executing a binary object generated from the program specification, we specify input, output, and error ports
as follows. In this example, the flightplan application illustrated in Section 4.2.2 takes an input data stream on the
port 10001 and sends output and error streams to the hosts specified by 10.0.0.1:20001 and 10.0.0.2:30001

respectively.

$./flightplan -input 10001 -outputs 10.0.0.1:20001 -errors 10.0.0.2:30001

The input, output, and error data streams share the same format shown in Table 2. The first line is used to declare
one or more variables (var0, var1,...) in a single data stream. The values of the declared variables start from the
second line. The data stream can have multiple values (value0, value1,...) with various spatial and temporal
combinations: ex1 is defined for a 3-D region and a time interval; ex2 is defined for a 2-D point and a time interval;
ex3 is defined for a 1-D interval and a particular time; ex4 is defined for no location and a particular time. All lines
have to end with an end-of-line marker (\r\n). Especially, the last line have to have only one end-of-line marker.

Note that the data format for input is compatible with output and error, that is, we can connect either an output or
error port to an input port of another application.

Table 2: The data stream format of input, output, and error
first line #var0, var1,...\r\n
after second line ex1) x0,y0,z0-x1,y1,z1:t0-t1:value0,value1,...\r\n

ex2) x,y:t0-t1:value0,value1,...\r\n
ex3) x0-x1:t:value0,value1,...\r\n
ex4) :t:value0,value1,...\r\n

last line \r\n

.

6. Related Work

Spatio-temporal constraint logic programming has been proposed. STACLP [3] o↵ers first-class support for rep-
resenting and reasoning about spatial and temporal data. A similar logic language to STACLP, MuTACLP [4][5], is
used to analyze geographical data especially for GIS (Geographical Information Systems). Both STACLP and MuTA-
CLP are implemented based on a Prolog system. Programming languages that support probabilistic reasoning have
also been proposed. PRISM[6] is a logic-based language that integrates logic programming and stochastic reasoning
including parameter learning. PRISM is capable of parameter learning from a given set of data and estimates the
probability to best explain the data. PRISM is also built on top of a Prolog system. Our proposed programming
language is also highly declarative and it is to generate code that takes as inputs, spatio-temporal data streams.

There are programming languages for time-critical systems such as automatic control and monitoring systems.
LUSTRE [7] [8], Giotto [9], and Esterel[10] are included in this category. These programming languages are declar-
ative and designed to respond input events synchronously. Although their target systems are similar to ours, the main
focus of these languages is real time behavior and there is no special support for spatial information nor reasoning
capabilities.

Shigeru Imai and Carlos A. Varela / Procedia Computer Science 00 (2012) 1–10 10

7. Conclusions and Future Work

We present a programming model for spatio-temporal data streaming applications. In particular, it has first-class
support for data selection and interpolation when no data is available for a given location and time. Towards our
primary goal of applying this programming model to flight planning applications, we have several future research
directions: 1) development of a compiler of the proposed language and a fully-functional application using real spatio-
temporal data to demonstrate the advantage of the proposed programming model; 2) learning error signatures for
common failures in aviation system, 3) adding the probability of data accuracy as inversely proportional to the spatio-
temporal distance between the current location and time and the defined data points; 4) studying stochastic reasoning
techniques and investigating the applicability of such techniques to spatio-temporal data streaming applications.

Acknowledgments

This research is partially supported by the Air Force O�ce of Scientific Research.

References

[1] J. W. Lloyd, Foundations of logic programming. Symbolic computation, Springer-Verlag, Berlin, Germany, 1984.
[2] Wikipedia, Air france flight 447, http://en.wikipedia.org/wiki/Air_France_Flight_447.
[3] A. Ra↵aet, T. W. Frhwirth, Spatio-temporal annotated constraint logic programming., in: PADL’01, 2001, pp. 259–273.
[4] P. Mancarella, G. Nerbini, A. Ra↵aet, F. Turini, MuTACLP: A language for declarative GIS analysis., in: Computational Logic’00, 2000, pp.

1002–1016.
[5] P. Baldan, P. Mancarella, A. Ra↵aet, F. Turini, MuTACLP: A language for temporal reasoning with multiple theories., in: Computational

Logic: Logic Programming and Beyond’02, 2002, pp. 1–40.
[6] T. Sato, Y. Kameya, Parameter learning of logic programs for symbolic-statistical modeling, in: Journal of Artificial Intelligence Re-

search(JAIR), Vol. 15, 2001, pp. 391–454.
[7] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous dataflow programming language LUSTRE, in: Proceedings of the IEEE,

1991, pp. 1305–1320.
[8] P. Caspi, D. Pilaud, N. Halbwachs, J. Plaice, Lustre: A declarative language for programming synchronous systems., in: POPL’87, 1987, pp.

178–188.
[9] T. A. Henzinger, B. Horowitz, C. M. Kirsch, Giotto: A time-triggered language for embedded programming., in: EMSOFT’01, 2001, pp.

166–184.
[10] G. Berry, The foundations of Esterel., in: Proof, Language, and Interaction’00, 2000, pp. 425–454.

Dynamic Data-Driven Avionics Systems with
Stochastic Error Detection and Correction

Shigeru Imai and Carlos A. Varela

Abstract Dynamic Data-Driven Avionics Systems embody ideas from the Dynamic
Data-Driven Applications Systems (DDDAS) paradigm by creating a data-driven
feedback loop that continuously analyzes spatio-temporal data streams coming from
airplane sensors, looks for errors in the data signaling different potential failure
modes, and autonomously corrects for such erroneous data when possible. In this
chapter, we define error signatures as constrained mathematical function patterns.
These signatures help stochastically determine the true mode of operation of an
avionics system. When a failure mode is detected, input data streams are corrected
using redundant data in order to continue normal operation of the DDDAS avion-
ics system. We introduce the PILOTS programming language to enable creation of
DDDAS systems from high-level specifications of the relationships between data
streams, error signatures, and error correction functions. We illustrate the applica-
bility of PILOTS by showing how the Air France AF447 accident from June 2009
could have been prevented by using ground speed and wind speed to recompute air
speed upon automatic detection of the pitot tubes icing failure. Aircraft accidents
often happen as a result of a series of small problems chained in a sequence that
compound themselves to become unmanageable. This work intends to attack one
source of such accident chains: data errors that result from malfunctioning sensors,
which can be automatically corrected thanks to the redundancy afforded by other
instruments and physical and geometric models embedded in DDDAS systems.

1 Introduction

Operating airplanes is a difficult task; pilots have to keep making right decisions
while dealing with a lot of information provided from the instruments in a cockpit.

Shigeru Imai and Carlos A. Varela
Department of Computer Science, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY
12180, USA, e-mail: {imais, cvarela}@cs.rpi.edu

1

2 Shigeru Imai and Carlos A. Varela

Moreover, in the event of instrument failures, it becomes even more difficult because
of potentially partially erroneous data. For example, pitot tubes icing which occurred
to Air France flight 447 (AF447) in June 2009 led to faulty airspeed readings and
eventually caused a fatal accident killing all 228 people on board [6]. The aircraft of
the AF447 flight crashed in the Atlantic Ocean due to ice which temporarily formed
in the pitot tubes causing erroneous airspeed readings, and the subsequent inability
of the auto-pilot and human pilots to recover.

However, the faulty airspeed readings could have been prevented by endowing
the avionics system with the ability to understand the following data relationship:

�!vg =�!va +
�!vw. (1)

where �!vg ,
�!va , and �!vw represent the ground speed, the airspeed, and the wind speed

vectors. These speeds are obtained through independent data collection methods: the
ground speed is typically computed from Global Positioning System (GPS) data, the
airspeed is computed from air pressure measurements by pitot tubes, and the wind
speed from weather forecast computer models. Since any one of the three speeds
can be calculated using the other two with Eq. (1), they are redundant to each other.
If the auto-pilot was aware of such redundancy in the data, it could have fixed the in-
correct airspeed readings quickly and thereby kept the system working properly. To
facilitate the development of such smart avionics systems, we create the Dynamic
Data-Driven Avionics System (see Fig. 1 for detail) based on the concept of Dy-
namic Data-Driven Application Systems (DDDAS) [8]. The Dynamic Data-Driven
Avionics System is designed to dynamically correct erroneous data and interpolate
sparse data.

PILOTS (ProgrammIng Language for spatiO-Temporal Streaming applications)
[11, 15, 12] is a highly declarative programming language that embodies the con-
cept of the Dynamic Data-Driven Avionics System. The PILOTS programming lan-
guage enables high-level development of applications to handle spatio-temporal
data streams and ultimately assist humans in making better decisions. Spatio-
temporal data streams refer to data streams whose items include associated spatial
and temporal coordinates, often viewed as meta data. Examples include temperature
measurements, financial stock values, gas prices, surveillance camera imaging, and
aircraft sensor readings. The PILOTS open-source project has evolved gradually to
date [11, 15, 12]. In this chapter, we summarize the advancements of the project and
its application to avionics systems based on PILOTS version 0.2.3 [17].

The rest of the chapter is organized as follows. Section 2 defines the requirements
to realize the proposed Dynamic Data-Driven Avionics System and describes prior
art of data streaming systems. Section 3 describes the methods for error detection
and correction including the mathematical definition of error signatures. Section 4
shows the detailed design of the Dynamic Data-Driven Avionics System that we
implemented as PILOTS. Section 5 shows an avionics application running on the
PILOTS system and associated error signatures. Section 6 shows performance met-
rics and results of error detection performance for a private Cessna flight and the
AF447 flight data. Finally, we conclude the chapter in Sect. 7 with future directions.

Dynamic Data-Driven Avionics Systems with Stochastic Error Detection and Correction 3

2 Research Challenges

2.1 Requirements for Dynamic Data-Driven Avionics System

As we have seen from the AF447 accident, spatio-temporal data streams may carry
incorrect data from sensors. Furthermore, spatial and time density of data streams
can be heterogeneous depending on the data sources. For example, GPS data may
be produced every 100 ms whereas airspeed data may be produced every second.
GPS data is associated with a single point due to its nature while weather fore-
cast data is tied to a vast region in general. The Dynamic Data-Driven Avionics
System shown in Fig. 1 is conceptually designed to deal with heterogeneous and
potentially erroneous spatio-temporal data streams. Upon a request from the Avion-

Fig. 1 Conceptual view of the Dynamic Data-Driven Avionics System

ics Application, the Pre-Processor takes raw data streams from sensors and then
interpolates the streams into homogeneous and corrected ones. Thanks to the Pre-
Processor, the Avionics Application can constantly compute its desired output with
the corrected data. Since the Avionics Application controls how to process the raw
data streams from the sensors, we can see that the resulting input data streams are
dynamically steered by the Avionics Application. We would like to write applica-
tions in a domain-specific and declarative way so that application programmers can
develop spatio-temporal data streaming applications reasonably easily.

In summary, key requirements for the Dynamic Data-Driven Avionics System
are described as follows:

1. Data interpolation and collection to view heterogeneous data streams as homo-
geneous data streams

2. Error detection and correction
3. High-level declarative programming language to write spatio-temporal applica-

tions including first-class support for describing how to control above two fea-
tures

4 Shigeru Imai and Carlos A. Varela

2.2 Prior Art

There are several systems that combine stream processing and data base manage-
ment, i.e., Data Stream Management Systems or DSMS, such as STREAM [5] and
Aurora [1]. They are designed to execute SQL-like queries to unbounded continuous
incoming data streams and output events of interest. Microsoft StreamInsight is a
DSMS-based system and has been extended to support spatio-temporal streams [2].
Also, the concept of the moving object data base (MODB) which adds support for
spatio-temporal data streaming to DSMS is discussed in [4]. These DSMS-based
spatio-temporal stream management systems support general continuous queries
for multiple moving objects; however, our streaming data analytics to detect er-
rors based on signatures and correct data on the fly is beyond the scope of a purely
declarative SQL-based query approach. In the context of Big Data processing, dis-
tributed, scalable, and fault-tolerant data streaming systems have been popular. Such
systems include Storm [10], Spark Streaming [18], and S4 [13]. These systems are
designed to be flexible and general so that complex applications such as machine
learning or graph processing algorithms can run over a lot of distributed comput-
ers. Unlike their general approaches, our domain-specific approach enables highly
declarative description of spatio-temporal data streaming applications. To the best
of our knowledge, none of the existing streaming processing systems satisfies the
requirements mentioned in Sec. 2.1.

3 Error Detection and Correction Methods

The error detection and correction methods are described in detail. The algorithm
recognizes the shape of an error function using error signatures, identifies the type
of error, and corrects an associated data value if possible.

3.1 Mathematical Preparations

Error function

An error function is an arbitrary function that computes a numerical value from
independently measured input data. It is used to examine the validity of redundant
data. If the value of an error function is zero, we interpret it as no error in the given
data.

Figure 2 illustrates the relationship among the ground speed, airspeed, and wind
speed when an airplane is flying. A vector �!v can be defined by a tuple (v,a), where
v is the length of �!v and a is the angle between �!v and a base vector. Following this
expression, �!vg ,

�!va , and �!vw are defined as (vg,ag),(va,aa), and (vw,aw) respectively
as shown in Fig. 2. To examine the relationship in Eq. (1), we can compute �!vg by

Dynamic Data-Driven Avionics Systems with Stochastic Error Detection and Correction 5

!
!

!
"

!
!

"!
"

!
#

!
!

!

"

#

!
"

Fig. 2 Trigonometry applied to the ground
speed, airspeed, and wind speed.

!

!

"

!
!
!

"

#

!
"#
$%
&
%#
%'
%(

!"
#$
%&
%#
%'
%)

Fig. 3 Error signature SI with a linear func-
tion f (t) = t + k,2  k  5.

applying trigonometry to 4ABC. From measured vg and computed vg, we can define
an error function as follows:

e(�!vg ,
�!va ,

�!vw) = |�!vg � (�!va +
�!vw)|= vg �

q
v2

a +2vavw cos(aa �aw)+ v2
w. (2)

The values of input data are assumed to be sampled periodically from corre-
sponding spatio-temporal data streams. Thus, an error function e changes its value
as time proceeds and can also be represented as e(t).

Error signatures

An error signature is a constrained mathematical function pattern that is used
to capture the characteristics of an error function e(t). Using a vector of con-
stants K̄ = hk1, . . . ,kmi, a function f (t), and a set of constraint predicates P̄ =
{p1(K̄), . . . , pl(K̄)}, the error signature S(K̄, f (t), P̄(K̄)) is defined as follows:

S(K̄, f (t), P̄(K̄)) = { f (t)|p1(K̄)^ · · ·^ pl(K̄)}. (3)

For example, an interval error signature can be defined as:

SI(K̄, f (t), P̄(K̄)) = { f (t) = t + k | 2  k  5}, (4)

where f (t) = t + k, K̄ = hki, P̄(K̄) = h2  k  5i. As shown in Fig. 3, this interval
error signature SI contains all linear functions with slope 1, and crossing the Y-axis
at values [2,5]

Given an error signature S(K̄, f (t), P̄(K̄)), we enumerate its elements as error
signature samples, i.e.,

s(t, K̄) = f (t) s.t. s(t, K̄) 2 S(K̄, f (t), P̄(K̄)). (5)

6 Shigeru Imai and Carlos A. Varela

An error signature sample is a particular function satisfying the constraints defined
by an error signature. For the interval error signature SI , a sample sI(t,h3i) is f (t) =
t +3.

Mode likelihood vectors

Given a set of error signatures {S0, . . . ,Sn}, we calculate di(t), the distance between
the measured error function e(t) and each error signature Si by:

di(t) = min
K̄

Z t

t�w
|e(t)� si(t, K̄)|dt. (6)

where w is the window size and si(t, K̄) 2 Si. Note that our convention is to capture
“normal” conditions as signature S0. The smaller the distance di(t), the closer the
raw data is to the theoretical signature Si. We define the mode likelihood vector as
L(t) = hl0(t), l1(t), . . . , ln(t)i where each li(t) is defined as:

li(t) =

(
1, if di(t) = 0
min{d0(t),...,dn(t)}

di(t)
, otherwise.

(7)

If di(t) = 0, it means that a measured error e and a error signature Si is perfectly
matched. Otherwise, we take the minimum of all the distances and divide it by
di(t) to normalize li. Consequently, each li 2 L,0 < li  1 represents the ratio of the
likelihood of signature Si being matched with respect to the likelihood of the best
signature.

3.2 Error Detection and Correction

Error Detection

Using a threshold t 2 (0,1) and the previously defined likelihood vector L, an error
mode is determined as follows:

• If there are more then one li > t , the error mode is unknown(-1),
• Otherwise, the error mode is i, where i is the index of the greatest element of L.

Because of the way L is created, the greatest element li will always be equal to
1. Given the threshold t we check for one likely candidate that is sufficiently more
likely than its successor by ensuring that l j  t . Thus we determine the correct mode
i by choosing the error signature Si corresponding to li. If i = 0 then the system is in
normal mode.

Dynamic Data-Driven Avionics Systems with Stochastic Error Detection and Correction 7

Error correction

It is problem dependent if a determined error mode i is recoverable or not. If there
is a mathematical relationship between an erroneous value and other independently
measured values, the erroneous value can be replaced by a new value computed from
the other independently measured values. In the case of the speed example used in
Eq.s (1) and (2), if the ground speed vg is detected as erroneous, its corrected value
vc

g can be computed by the airspeed and wind speed as follows:

vc
g =

q
v2

a +2vavw cos(aa �aw)+ v2
w. (8)

4 Dynamic Data-Driven Avionics Systems

PILOTS is a programming language and an associated runtime system specifi-
cally designed for analyzing data streams incorporating space and time. Using PI-
LOTS, application developers can easily program an application that handles spatio-
temporal data streams by writing a high-level (declarative) program specification.
Also, by defining appropriate error signatures in the program specification, the PI-
LOTS runtime system automatically detects and corrects errors in the data streams.
This section describes the details of the PILOTS system as a concrete implementa-
tion of the Dynamic Data-Driven Avionics System.

4.1 System Overview

Figure 4 shows the architecture of the PILOTS runtime system, which implements
the error detection and correction methods described in the previous section. It con-
sists of three parts: the Data Selection, the Error Analyzer, and the Application
Model modules.

The Application Model obtains homogeneous data streams (d0
1,d

0
2, . . . ,d

0
N) from

the Data Selection module, and then it generates outputs (o1,o2, . . . ,oM) and data er-
rors (e1,e2, . . . ,eL). The Data Selection module takes heterogeneous incoming data
streams (d1,d2, . . . ,dN) as inputs. Since this runtime is assumed to be working on a
moving object, the Data Selection module is aware of the current location and time.
Thus, it returns appropriate values to the Application Model by selecting or interpo-
lating data in time and location depending on the data selection method specified in
the PILOTS program.

The ErrorAnalyzer collects the latest w error values from the Application Model
and keeps analyzing errors based on a set of error signatures. If it detects a recover-
able error, then it replaces an erroneous input with the corrected one by applying a
corresponding error correction equation. The Application Model computes the out-
puts based on the corrected inputs produced from the Error Analyzer.

8 Shigeru Imai and Carlos A. Varela

!
!"
"#$%&$%'$%()

!
#"
"#$%&$%'$%()

!
$"
"#$%&$%'$%()

!
!
!

!"#$"#%

!""#$%&'$()

*(+,#

!"#$%&"'(

)*+*(,+-.*%/

01+'$&"'(

)*+*(,+-.*%/

*
#

*
!

!
!
!

*
%

+
#

+
!

!
!
!

+
&

&''('%

-&'&

.,#,%'$()

!"#$"%&''()&)')&')'%*"+,-,"('.)&"

!
!
,

!
#
,

!
$
,

/00(01

-,',%'$()

!""#"$%&'()*+",-

!
!
!

!"##$%&

'()$

!"##$%&

*+,-&(+%
-%.%/-

'
$%-

!
$%!$%-

(
0

.#/,$0

/01*$&"'2,3"2,400('5"+&0.

1%.%23
'
$%3

!
$%444$%3

(
5

12)'$,""#"

"%.%+/%0+#

/00(01

2(00,%'$()

#$,+1$#-23$0+#

/0.."+&'()&)',-'

."+05".)62"

)+4$

"%#$,+1$#-23$

%+0$##+#

2--$-(3"*456.-

!+##$,&$405-&-

Fig. 4 Data streaming architecture with error detection and correction.

In the PILOTS programming model, the application acquires the selected or in-
terpolated data (d0

1,d
0
2, . . . ,d

0
n) from the Data Selection module at a certain rate spec-

ified in the application and computes both outputs and data errors. The application
continues this computing process in an infinite loop until the user explicitly requests
to stop the computation. The Data Selection module essentially allows an applica-
tion to view a set of heterogeneous data streams as a homogeneous data stream, and
therefore enables a separation of concerns: application programmers can focus on
their application model.

4.2 Spatio-Temporal Data Selection

We define two types of data selection and one data interpolation method for the
location and time. These operations are applicable to either single variables (i.e.
t,x,y, or z) or multiple variables (i.e. combinations of t,x,y, and z).

• closest
This method takes a 1-D argument (i.e., t,x,y, or z) to find the data closest to
a given location or time. Figure 5 shows examples of selecting closest data to
the current time and location respectively. In Fig. 5(a), when selecting the clos-
est time to the current time tcurr, di(tcurr) is not defined, but di(t) is defined for
{t | t1  t  t2, t3  t  t4, t5  t  t6}. Since t4 is closest to tcurr, we define
d0

i(tcurr) , di(t4). Similarly, we define d0
i(xcurr) , di(x3) for the example shown

in Fig. 5(b).

Dynamic Data-Driven Avionics Systems with Stochastic Error Detection and Correction 9

Fig. 5 (a) Selecting the closest time; (b) Selecting the closest x value

• euclidean
This method takes 2-D or 3-D arguments to find the data closest to a given lo-
cation. Figure 6 shows an example for the 2-D case, where data is not defined
for the current location lcurr = (xcurr,ycurr), but are defined for l0, and l1. Since
lcurr is closest to l0 = (x0,y0) in Euclidean distance, we define d0

i(xcurr,ycurr) ,
di(x0,y0).

Fig. 6 Selecting the closest 2D region in
Euclidean distance

Fig. 7 Linear interpolation

• linear interpolation
This method takes 1-D, 2-D or 3-D arguments to interpolate the defined data.
It also takes another argument ninterp to select closest ninterp data from a given
location to interpolate. Suppose we have a situation shown in Fig. 7, where data is
not defined for the current location lcurr = (xcurr,ycurr), but are defined for l0, l1,
and l2. Also, suppose that ninterp = 2, we select l0 and l1 since they are closer to
lcurr than l2. In such a case, we linearly interpolate the data defined for l0 and l1
by taking a weighted sum based on the Euclidean distance as follows:

d0
i(xcurr,ycurr) , (1� kl0 � lcurrk

Â1
i=0 kli � lcurrk

) ·di(x0,y0)+

(1� kl1 � lcurrk
Â1

i=0 kli � lcurrk
) ·di(x1,y1) (9)

Note that the equation (9) can be easily extended to n data points.

10 Shigeru Imai and Carlos A. Varela

Multiple methods can be specified in the application program and they are ap-
plied to the input data in order. If multiple data get selected by one method (e.g.,
more than one closest point), a subsequent method takes that multiple data as the
input and further select data. If there still remains more than one data after apply-
ing all the methods, then we implicitly apply linear interpolation to output the final
value.

4.3 Declarative Programming Language

A PILOTS program is highly declarative. It includes an inputs section to specify
the data streams and how data is to be extrapolated from incomplete data, typi-
cally using declarative geometric criteria described in the previous subsection (i.e..,
closest, interpolate, euclidean keywords) It also includes outputs
and errors sections to specify the data streams to be produced by the applica-
tion, as a function of the input streams with a given frequency. If a detected error is
recoverable, output values are computed from corrected input data, otherwise orig-
inal input data is used. The signatures and correct sections enable PILOTS
programmers to specify error signatures for known error conditions, as well as the
function to use to correct the data automatically if such data errors are found. An
example PILOTS program is presented in Sect. 5.2.

5 Avionics System Application Example

In this section, we derive a set of error signatures for the speed example used in
the previous sections. Also, we present a PILOTS program implementing the error
signatures and corresponding error correction equations.

5.1 Error Signatures for Speed Data

We consider the following four operational modes: 1) normal (no error), 2) pitot tube
failure due to icing, 3) GPS failure, 4) both pitot tube and GPS failures. Suppose
an airplane is flying at airspeed va, we assume that other speeds as well as failed
airspeed and ground speed can be expressed as follows.

• ground speed: vg ⇡ va.
• wind speed: vw  ava, where a is the maximum wind to airspeed ratio.
• pitot tube failed airspeed: blva  v f

a  bhva, where bl and bh are the lower and
higher values of pitot tube clearance ratio and 0  bl  bh  1. 0 represents a
fully clogged pitot tube, while 1 represents a fully clear pitot tube.

Dynamic Data-Driven Avionics Systems with Stochastic Error Detection and Correction 11

• GPS failed ground speed: v f
g = 0.

We assume that when a pitot tube icing occurs, it is gradually clogged and thus
the airspeed data reported from the pitot tube also gradually drops and eventually
remains at a constant speed while iced. This resulting constant speed is characterized
by ratio bl and bh. On the other hand, when a GPS failure occurs, the ground speed
suddenly drops to zero. This is why we model the failed ground speed as v f

g = 0.
In the case of pitot tube failure, let the ground speed, wind speed, and airspeed be

vg = va,vw = ava, and v f
a = bva. The error function (2) can be expressed as follows:

e = va �
q

v2
a(b2 +2abcos(aa �aw)+a2).

Since �1  cos(aa �aw) 1, the error is bounded by the following:

va �
q

v2
a(a+b)2  e  va �

q
v2

a(a�b)2

(1�a�b)va  e  (1� |a�b|)va. (10)

In the case of GPS failure, let the ground speed, wind speed, and airspeed be v f
g =

0,vw = ava, and va = va. The error function (2) can be expressed as follows:

e = 0�
q

v2
a(1+2acos(aa �aw)+a2).

Similarly to the pitot tube failure, we can derive the following error bounds:

�(a+1)va  e �|a�1|va. (11)

We can derive error bounds for the normal and both failure cases similarly. Applying
the wind to airspeed ratio a and the pitot tube clearance ratio bl  b  bh to the
constraints obtained in Inequations (10) and (11), we get the error signatures for
each error mode as shown in Table 1.

Table 1 Error signatures for speed data.
Mode Error Signature

Function Constraints
Normal e = k k 2 [�ava,ava]

Pitot tube failure e = k k 2 [(1�a�bh)va,(1� |a�bl |)va]
GPS failure e = k k 2 [�(a+1)va,�|a�1|va]
Both failures e = k k 2 [�(a+bh)va,�|a�bl |va]

12 Shigeru Imai and Carlos A. Varela

5.2 Speed Checker Program

A PILOTS program called speedcheck implementing the error signatures shown
in Table 1 is presented in Fig. 8. This program checks if the wind speed, airspeed,
and ground speed are correct or not, and computes a crab angle, which is used
to adjust the direction of the aircraft to keep a desired ground track. The speed
parameters used in this particular example are a = 0.1,bl = 0.2, and bh = 0.33,
which are reasonable values from actual failure data we have observed. Also, for
this program to be applicable to a Cessna 182-RG, we use a cruise speed of 162
knots as va.

6 Evaluation

We apply the error signatures defined in Sect. 5.1 to two sets of real flight data. The
first one is a private flight using a Cessna 182-RG identified by N756VH [9] from
Albany, NY to Fort Meade, MD on April 3rd, 2012. The other is the Air France
flight 447 using an Airbus A330-203 which took off from Rio de Janeiro bound
for Paris on June 1st, 2009. To simulate the failures mentioned in Sect. 5.1, we
added corresponding errors to the N756VH Cessna flight data; however, we used the
real pitot tube failure data for the AF447 flight. PILOTS programs’ error detection
accuracy and response time to mode changes are evaluated.

6.1 Performance Metrics

• Accuracy: This metric is used to evaluate how accurately the algorithm de-
termines the true mode. Assuming the true mode transition m(t) is known for
t = 0,1,2, . . . ,T , let m0(t) for t = 0,1,2, . . . ,T be the mode determined by
the error detection algorithm. We define accuracy(m,m0) = 1

T ÂT
t=0 p(t), where

p(t) = 1 if m(t) = m0(t) and p(t) = 0 otherwise.
• Average Response Time: This metric is used to evaluate how quickly the algo-

rithm reacts to mode changes. Let a tuple (ti,mi) represent a mode change point,
where the mode changes to mi at time ti. Let M = {(t1,m1),(t2,m2), . . . ,(tN ,mN)}
and M0 = {(t 01,m0

1),(t
0
2,m

0
2), . . . ,(t

0
N0 ,m0

N0)} be the sets of true mode changes and
detected mode changes respectively. For each i = 1 . . .N, we can find the smallest
t 0j such that (ti  t 0j)^ (mi = m0

j); if not found, let t 0j be ti+1. The response time ri
for the true mode mi is given by t 0j � ti. We define the average response time by
1
N ÂN

i=1 ri.

Dynamic Data-Driven Avionics Systems with Stochastic Error Detection and Correction 13'

&

$

%

program speedcheck;

inputs

wind_speed, wind_angle (x,y,z,t) using

euclidean(x,y), closest(t), interpolate(z,2);

air_speed, air_angle (x,y,t) using

euclidean(x,y), closest(t);

ground_speed, ground_angle (x,y,t) using

euclidean(x,y), closest(t);

outputs

crab_angle: arcsin(wind_speed

*

sin(wind_angle - air_angle) /

sqrt(air_speedˆ2 + 2

*

air_speed

*

wind_speed

*

cos(wind_angle - air_angle) +

wind_speedˆ2))

at every 1 sec;

errors

e: ground_speed -

sqrt(air_speedˆ2 + wind_speedˆ2 + 2

*

air_speed

*

wind_speed

*

cos(wind_angle - air_angle));

signatures

/

*

v_a = 162 knots

*

/

S0(k): e=k, -16.2<=k, k<= 16.2 "Normal";

S1(k): e=k, 91.8<=k, k<= 145.8 "Pitot tube failure";

S2(k): e=k, -178.2<=k, k<=-145.8 "GPS failure";

S3(k): e=k, -70.2<=k, k<= -16.2 "Both failures";

correct

S1: air_speed = sqrt(ground_speedˆ2 + wind_speedˆ2 +

2

*

ground_speed

*

wind_speed

*

cos(ground_angle - wind_angle));

S2: ground_speed = sqrt(air_speedˆ2 + wind_speedˆ2 +

2

*

air_speed

*

wind_speed

*

cos(wind_angle - air_angle));

end

Fig. 8 A declarative specification of the speedcheck PILOTS program.

6.2 Experiment 1: N756VH Cessna Flight

6.2.1 Flight data

Flight data is collected through the following independent sources:

• ground speed: Flight track log provided by FlightAware [9].
• airspeed: Manually recorded by the pilot.
• wind speed: Weather forecast information provided by National Weather Ser-

vice [14].

14 Shigeru Imai and Carlos A. Varela

The flight duration is 1 hour 41 minutes. The collected speed data and error
computed by Eq. (2) are shown in Fig. 9(a). Notice that the airspeed data during
take off and landing is not accurate due to the data collection mechanism.

6.2.2 Experimental Settings

Using the speedcheck PILOTS program shown in Fig. 8, the 6060 seconds (=1
hour 41 minutes) of flight departing from Albany, NY and landing at Fort Meade,
MD are recreated. Three types of error are simulated as shown below. In each case,
all data streams except for erroneous one(s) are actual. Defined error modes are:
�1 for unknown, 0 for normal, 1 for pitot tube failure, 2 for GPS failure, and 3 for
both failures.

• Pitot tube failure: 2400 seconds after the departure, the airspeed drops from 162
knots to 50 knots within 10 seconds and stays at 50 knots until landing. The set
of true mode changes is given by M = {(1,0),(2401,1)}.

• GPS failure: 2400 seconds after the departure, the ground speed drops from 171
knots to 0 knots immediately and stays at 0 knots until landing. The set of true
mode changes is given by M = {(1,0),(2401,2)}.

• Both pitot tube and GPS failures: The above two speed changes happen simul-
taneously at 2400 seconds after the departure. Both speeds remain failed until
landing. The set of true mode changes is given by M = {(1,0),(2401,3)}.

6.2.3 Results

For all the three cases, when w = 1 and t = 0.8, the best results are observed as
follows: accuracy = 0.9294 and response time = 4 seconds for the pitot tube failure,
accuracy = 0.935 and response time = 0 seconds for the GPS failure, and accuracy
= 0.9342 and response time = 5 seconds for both failures. The transitions of the
corrected speed and detected modes when w = 1 and t = 0.8 are shown in Fig.s 9(b)
for the pitot tube failure, 9(c) for the GPS failure, and 9(d) for the both failures
respectively. For the first 390 seconds, the error mode is detected incorrectly in all
three cases; the true modes are 0 (normal mode) whereas the detected modes are 3
(both failures) during this period. These wrong mode detections are originated from
the erroneously recorded airspeed. Other than that, the error detection method works
pretty well for all three cases.

Detected modes go into the unknown mode for a short period around 2401 sec-
onds for both pitot tube failure and both failures. Since the airspeed takes a few
seconds to drop, during that time, the normal and pitot tube failure modes are com-
peting against each other for the pitot tube failure case. For the both failures case, the
GPS failure and both failures modes are competing. Unlike the other two cases, the
ground speed drops immediately for the GPS failure, and there is no conflict with
other error modes, thus the GPS failure mode is correctly detected without going
into the unknown mode.

Dynamic Data-Driven Avionics Systems with Stochastic Error Detection and Correction 15

!"#$%&'(' ')"*$+,&-).*

!/#$0%1 +,&-).* !2#$3('4$5&'('$')"*$,62$0%1$+,&-).*7

!,#$8(.9,-

Fig. 9 Corrected speeds and detected modes for the N756VH 03-Apr-2012 KALB-KFME flight
(t = 0.8,w = 1).

6.3 Experiment 2: Air France Flight 447

6.3.1 Flight Data

The ground speed and airspeed are collected based on Appendix 3 in the final re-
port of Air France flight 447 [6]. Note that the (true) airspeed was not recorded in
the flight data recorder so that we computed it from recorded Mach (M) and static
air temperature (SAT) data. The airspeed was obtained by using the relationship:
va = a0M

p
SAT/T0, where a0 is the speed of sound at standard sea level (661.47

knots) and T0 is the temperature at standard sea level (288.15 Kelvin). Independent
wind speed information was not recorded either. According to the description from
page 47 of the final report: “(From the weather forecast) the wind and temperature
charts show that the average effective wind along the route can be estimated at ap-
proximately ten knots tail-wind”. We followed this description and created the wind
speed data stream as ten knots tail wind.

16 Shigeru Imai and Carlos A. Varela

6.3.2 Experimental Settings

According to the final report, speed data was provided from 2:09:00 UTC on June
1st 2009 and it became invalid after 2:11:42 UTC on the same day. Thus, we ex-
amine the valid 162 seconds of speed data including a period of pitot tube failure
which occurred from 2:10:03 to 2:10:36 UTC. We also use the speedcheck PI-
LOTS program shown in Fig. 8 except for constraints values in signatures which
use va = 470 knots, the cruise airspeed of the AF447 flight. Defined error modes
are the same as Experiment 1, so the set of true mode changes is defined as
M = {(1,0),(64,1),(98,0)}.

6.3.3 Results

Same as Experiment 1, the best results, accuracy = 0.9631 and average response
time = 2.5 seconds, are observed when w = 1 and t = 0.8. The transitions of the
corrected speed and detected modes that show the best accuracy with w = 1 and
t = 0.8 are shown in Fig. 10. Looking at the detected modes in Fig. 10, the pitot tube
failure is successfully detected from 69 to 97 seconds except for the interval 64 to
69 seconds due to the slowly decreasing airspeed. The response time for the normal
to pitot tube failure mode is 5 seconds and for the pitot tube failure to normal mode
is 0 seconds (thus the average response time is 2.5 seconds). From the corrected
airspeed in Fig. 10, the airspeed successfully starts to get corrected at 69 seconds and
seamlessly transitions back to the normal airspeed when it recovers at 98 seconds.

Fig. 10 Corrected airspeed and detected modes for AF447 flight.

Dynamic Data-Driven Avionics Systems with Stochastic Error Detection and Correction 17

7 Conclusion and Future Directions

We present the concept of the Dynamic Data-Driven Avionics System and its real-
ization, the PILOTS system. The PILOTS runtime system dynamically interpolates
and corrects heterogeneous data, and then provides it as homogeneous data to appli-
cations. This process can be viewed as dynamic incorporation of (interpolated and
corrected) sensor data into an application. Also, since the application can control
this process by specifying data interpolation methods and error signatures, we see
that the application dynamically steers the data pre-processing process (i.e., inter-
polation and correction). Thus, there is a dynamic feedback & control loop between
the data pre-processing and the application, which is the core concept of Dynamic
Data Driven Applications Systems (DDDAS).

The results for both Cessna and AF447 flight experiments illustrate the effective-
ness of our approach. Since the system dynamically adapts to sparse and partially
incorrect data, the application keeps generating valid outputs with a relatively sim-
ple PILOTS program as shown in Fig. 8. The error detection accuracy is at least
93% and the response time to correct data is at most 5 seconds.

When computing mode likelihood vectors, time to compute distances by Eq. (6)
can be significant due to the exponential growth of the search space as the size
of the constants set K̄ increases. To use the presented error detection and correc-
tion methods in larger-scale real-time systems, techniques to bound the running
time must be devised. Other future research directions include applying the error
signature-based error correction methods to other flight accidents, e.g., those due
to fuel sensor reading errors. Also, uncertainty quantification [3] is an important
future direction to associate confidence to data and error estimations in support of
decision making. More and more data are expected to be available in cockpits in the
near future [16], and thus automated data analysis systems will become even more
crucial to both manned and unmanned aerial vehicles. We envision scalable smarter
avionics systems processing massive data in real-time by dynamically creating and
connecting multiple PILOTS program instances. Such systems need to reason about
spatial and temporal data and constraints and give the pilots better information to
make more accurate judgments during critical moments. The presented techniques
and software can be used as a promising starting point to develop these dynamic
data-driven avionics systems.

Acknowledgements This research is partially supported by the DDDAS program of the Air Force
Office of Scientific Research, Grant No. FA9550-11-1-0332 and a Yamada Corporation Fellow-
ship.

References

1. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M.,
Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data stream management. The

18 Shigeru Imai and Carlos A. Varela

VLDB JournalThe International Journal on Very Large Data Bases 12(2), 120–139 (2003)
2. Ali, M.H., Chandramouli, B., Raman, B.S., Katibah, E.: Spatio-temporal stream processing in

Microsoft StreamInsight. IEEE Data Eng. Bull. pp. 69–74 (2010)
3. Allaire, D., Willcox, K.: Surrogate modeling for uncertainty assessment with application to

aviation environmental system models. AIAA journal 48(8), 1791–1803 (2010)
4. An, K., Kim, J.: Moving objects management system supporting location data stream. In: Pro-

ceedings of the 4th WSEAS International Conference on Computational Intelligence, Man-
Machine Systems and Cybernetics, CIMMACS’05, pp. 99–104. World Scientific and Engi-
neering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2005)

5. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Ito, K., Motwani, R., Srivastava, U., Widom,
J.: Stream: The Stanford data stream management system. In: ACM SIGMOD Conference.
Springer (2004)

6. Bureau d’Enquêtes et d’Analyses pour la Sécurité de l’Aviation Civile: Fi-
nal Report: On the accident on 1st June 2009 to the Airbus A330-203 regis-
tered F-GZCP operated by Air France flight AF 447 Rio de Janeiro - Paris.
http://www.bea.aero/en/enquetes/flight.af.447/rapport.final.en.php (2012)

7. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W.,
Krishnamurthy, S., Madden, S.R., Reiss, F., Shah, M.A.: TelegraphCQ: continuous dataflow
processing. In: Proceedings of the 2003 ACM SIGMOD international conference on Manage-
ment of data, pp. 668–668. ACM (2003)

8. Darema, F.: Dynamic data driven applications systems: A new paradigm for application sim-
ulations and measurements. In: Computational Science-ICCS 2004, pp. 662–669. Springer
(2004)

9. FlightAware: Flight track log for N756VH on 03-Apr-2012 (KALB-KFME).
http://flightaware.com/live/flight/N756VH/history/20120403/1800Z/KALB/KFME/tracklog

10. software foundation, T.A.: Storm, distributed and fault-tolerant realtime computation.
http://storm.incubator.apache.org/

11. Imai, S., Varela, C.A.: A programming model for spatio-temporal data streaming applications.
In: Dynamic Data-Driven Application Systems (DDDAS 2012), pp. 1139–1148. Omaha, Ne-
braska (2012)

12. Klockowski, R.S., Imai, S., Rice, C., Varela, C.A.: Autonomous data error detection and re-
covery in streaming applications. In: Dynamic Data-Driven Application Systems (DDDAS
2013) Workshop, pp. 2036–2045 (2013)

13. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed stream computing platform.
In: Data Mining Workshops (ICDMW), 2010 IEEE International Conference on, pp. 170–177.
IEEE (2010)

14. NOAA’s National Weather Service: Forecast winds and temps aloft.
http://aviationweather.gov/products/nws/winds/

15. S. Imai and C. A. Varela: Programming spatio-temporal data streaming applications with high-
level specifications. In: 3rd ACM SIGSPATIAL International Workshop on Querying and
Mining Uncertain Spatio-Temporal Data (QUeST) 2012. Redondo Beach, California, USA
(2012)

16. U.S. Department of Transportation Federal Aviation Administration: Code of fed-
eral regulations part 91.225: Automatic dependent surveillance-broadcast (ADS-B) out
performance requirements to support air traffic control (ATC) service; final rule.
http://www.faa.gov/regulations policies/faa regulations/ (2013)

17. Worldwide Computing Laboratory, Rensselaer Polytechnic Institute: The PILOTS program-
ming language. http://wcl.cs.rpi.edu/pilots/

18. Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized streams: an efficient and fault-
tolerant model for stream processing on large clusters. In: Proceedings of the 4th USENIX
conference on Hot Topics in Cloud Ccomputing, pp. 10–10. USENIX Association (2012)

